skip to main content

Evaluasi Polusi Udara PM2.5 dan PM10 di Kota Bandung serta Kaitannya dengan Infeksi Saluran Pernafasan Akut

1Jurusan Teknik Refrigerasi & Tata Udara, Politeknik Negeri Bandung, Bandung 40559, Indonesia

2Faculty of Mechanical Engineering, Universiti Teknikal Malaysia Melaka, Melaka 76100, Malaysia

Open Access Copyright 2024 Jurnal Kesehatan Lingkungan Indonesia under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Abstract

Latar belakang: Polusi udara PM2.5 dan PM10 adalah salah satu polutan utama di kota-kota besar, termasuk di Kota Bandung. Salah satu dampak negatif dari polusi PM2.5 dan PM10 adalah meningkatnya kasus infeksi saluran pernafasan akut (ISPA) di wilayah terdampak. Untuk itu, penelitian ini bertujuan mengkaji kaitan antara konsentrasi PM2.5 dan PM10 di kota Bandung dengan jumlah kasus ISPA yang tercatat di puskesmas yang berdekatan dengan lokasi pengujian.

Metode: Pengukuran PM2.5 dan PM10 dilakukan di tiga lokasi, dua di pusat kota, yaitu di Monumen 0 km dan Alun-alun, serta satu di Bandung utara (Di depan Terminal Dago). Pengambilan data dilakukan selama tujuh hari dari jam 08.00 hingga 16.00.

Hasil: Hasil pengukuran menunjukkan bahwa urutan konsentrasi PM2.5 dan PM10 dari yang tertinggi ke terendah adalah di Alun-alun, Monumen 0 km dan Terminal Dago. Secara umum konsentrasi PM2.5 dan PM10 di tiga lokasi masih di bawah baku mutu bila mengacu PPRI Nomor 22 tahun 2021, kecuali beberapa hari di Alun-alun. Namun bila mengacu pada standar dari WHO, konsentrasi PM2.5 di semua lokasi telah melebihi baku mutu, sedangkan untuk PM10, ada hari-hari tertentu yang di atas baku mutu. Ini artinya bila mengacu pada standard WHO, Kota Bandung darurat PM2.5, karena di semua lokasi pengukuran menunjukkan konsentrasi PM2.5 telah di atas baku mutu dari WHO.

Simpulan: Berdasarkan data kasus ISPA dari puskesmas di wilayah pengukuran menunjukkan terjadi kebalikan, dimana jumlah kasus ISPA paling banyak terjadi di daerah Dago meskipun konsentrasi PM2.5 dan PM10-nya yang paling rendah. Kasus ISPA di pusat kota tidak sebanyak di puskesmas Dago. Diduga hal ini disebabkan masyarakat yang tinggal di pusat kota tidak banyak yang berobat di Puskemas, sedangkan masyarakat yang tinggal di daerah Dago lebih banyak yang berobat ke Puskesmas di wilayahnya.

 

ABSTRACT

Title: Evaluation of PM2.5 and PM10 Air Pollution in Bandung City and its Relation to Acute Respiratory Infection

Background:PM2.5 and PM10 are two main pollutants in big cities like Bandung. The negative effects of the pollution caused by PM2.5 and PM10 has been a rise in the frequency of acute respiratory infections (ARI). Therefore, this study aims to assess the correlation between PM2.5 and PM10 concentrations in Bandung city and the number of ARI cases recorded at the Puskesmas adjacent to the test site.

Methods: PM10 measurements were made in three places: one in northern Bandung (in front of Dago Terminal), two in the city center (at the 0 km Monument and Alun-alun). Data were collected for seven days, 08.00 to 16.00.

Results: The results show that the order of PM2.5 and PM10 concentrations from highest to lowest is in Alun-alun, 0 km Monument and Dago Terminal. Referring to PPRI number 22 of 2021, PM2.5 and PM10 concentrations at all three locations remain under the standard, except for a few days in Alun-alun. However, compared to WHO guidelines, PM2.5 concentrations are always greater than the standard, but for PM10, only few days may higher than the standard. Having above average PM2.5 concentrations at each measurement, Bandung is considered in emergency state according to WHO guidelines.

Conclusion: Based on measurement data on ARI cases from Puskesmas (Public Health Center), the opposite occurred, the highest number of ARI cases occurred in the Dago area even though the PM2.5 and PM10 concentrations were the lowest. There are not as many ARI cases in the city center. It is suspected that many people who live in the city canter didn’t seek treatment at the Puskemas, while more people who live in the Dago area seek treatment at the Puskesmas.

 

Note: This article has supplementary file(s).

Fulltext View|Download |  Turnitin
Turnitin
Subject
Type Turnitin
  Download (3MB)    Indexing metadata
 ES
Etichal Statement
Subject
Type ES
  Download (395KB)    Indexing metadata
 CTA
Copyrigh Transfer Agreement
Subject
Type CTA
  Download (276KB)    Indexing metadata
Keywords: polusi udara; Kota Bandung; ISPA; baku mutu udara

Article Metrics:

  1. Kusnandar VB. Ini Wilayah Paling Padat Penduduk di Jawa Barat pada Juni 2022 [Internet]. 2022 [cited 2023 Jun 2]. Available from: https://databoks.katadata.co.id/datapublish/2022/10/10/ini-wilayah-paling-padat-penduduk-di-jawa-barat-pada-juni-2022
  2. Sierra-Porta D, Solano-Correa YT, Tarazona-Alvarado M, de Villavicencio LAN. Linking PM10 and PM2.5 Pollution Concentration through Tree Coverage in Urban Areas. Clean – Soil, Air, Water [Internet]. 2023;51(5):2200222. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/clen.202200222
  3. Millán-Martínez M, Sánchez-Rodas D, Sánchez de la Campa AM, de la Rosa J. Contribution of anthropogenic and natural sources in PM10 during North African dust events in Southern Europe. Environ Pollut. 2021 Dec 1;290:118065. https://doi.org/10.1016/j.envpol.2021.118065
  4. Vicente AB, Juan P, Meseguer S, Díaz-Avalos C, Serra L. Variability of PM10 in industrialized-urban areas. New coefficients to establish significant differences between sampling points. Environ Pollut. 2018 Mar 1;234:969–78. https://doi.org/10.1016/j.envpol.2017.12.026
  5. Scapini V, Torres S, Rubilar-Torrealba R. Meteorological, PM2.5 and PM10 factors on SARS-COV-2 transmission: The case of southern regions in Chile. Environ Pollut. 2023 Apr 1;322:120961. https://doi.org/10.1016/j.envpol.2022.120961
  6. Pratama A, Sofyan A. Analisis dispersi pencemar udara PM10 di Kota Bandung menggunakan WRFCHEM data asimilasi. J Tek Lingkung [Internet]. 2020;26(1):19–36. Available from: https://journals.itb.ac.id/index.php/jtl/article/view/14066
  7. PP No. 41 Tahun 1999 tentang Pengendalian Pencemaran Udara [JDIH BPK RI] [Internet]. [cited 2023 Jun 2]. Available from: https://peraturan.bpk.go.id/Home/Details/54332/pp-no-41-tahun-1999
  8. PP No. 22 Tahun 2021 tentang Penyelenggaraan Perlindungan dan Pengelolaan Lingkungan Hidup [JDIH BPK RI] [Internet]. [cited 2023 Jun 2]. Available from: https://peraturan.bpk.go.id/Home/Details/161852/pp-no-22-tahun-2021
  9. Puji L. Tantangan pengelolaan kualitas udara di Indonesia: Karakteristik, dampak, sumber dan pengendaliannya. Orasi Ilmiah Guru Besar Institut Teknologi Bandung; 2016
  10. Ab Manan N, Noor Aizuddin A, Hod R. Effect of Air Pollution and Hospital Admission: A Systematic Review. Ann Glob Heal. 2018; https://doi.org/10.29024/aogh.2376
  11. Cheng J, Su H, Xu Z. Intraday effects of outdoor air pollution on acute upper and lower respiratory infections in Australian children. Environ Pollut. 2021 Jan 1;268:115698. https://doi.org/10.1016/j.envpol.2020.115698
  12. Horne BD, Joy EA, Hofmann MG, Gesteland PH, Cannon JB, Lefler JS, et al. Short-Term Elevation of Fine Particulate Matter Air Pollution and Acute Lower Respiratory Infection. Am J Respir Crit Care Med [Internet]. 2018 Apr 13;198(6):759–66. Available from: https://doi.org/10.1164/rccm.201709-1883OC
  13. Nhung NTT, Schindler C, Dien TM, Probst-Hensch N, Künzli N. Association of ambient air pollution with lengths of hospital stay for hanoi children with acute lower-respiratory infection, 2007–2016. Environ Pollut. 2019 Apr 1;247:752–62. https://doi.org/10.1016/j.envpol.2019.01.115
  14. Ibrahim MF, Hod R, Nawi AM, Sahani M. Association between ambient air pollution and childhood respiratory diseases in low- and middle-income Asian countries: A systematic review. Atmos Environ. 2021 Jul 1;256:118422. https://doi.org/10.1016/j.atmosenv.2021.118422
  15. Vu VT, Lee BK, Kim JT, Lee CH, Kim IH. Assessment of carcinogenic risk due to inhalation of polycyclic aromatic hydrocarbons in PM10 from an industrial city: A Korean case-study. J Hazard Mater. 2011 May 15;189(1–2):349–56. https://doi.org/10.1016/j.jhazmat.2011.02.043
  16. WHO. Selected non-heterocyclic polycyclic aromatic hydrocarbons [Internet]. Geneva PP - Geneva: World Health Organization; 1998. (Environmental health criteria ; 202). Available from: https://apps.who.int/iris/handle/10665/41958
  17. Zhang N, Han B, He F, Xu J, Zhao R, Zhang Y, et al. Chemical characteristic of PM2.5 emission and inhalational carcinogenic risk of domestic Chinese cooking. Environ Pollut. 2017 Aug 1;227:24–30. https://doi.org/10.1016/j.envpol.2017.04.033
  18. Services H. Toxicological Profile for Polycyclic Aromatic Hydrocarbons (PAHS). ATSDR’s Toxicol Profiles. 1995;(August)
  19. Lewis SL, Russell LM, McKinsey JA, Harris WJ. Small contributions of dust to PM2.5 and PM10 concentrations measured downwind of Oceano Dunes. Atmos Environ. 2023 Feb 1;294:119515. https://doi.org/10.1016/j.atmosenv.2022.119515
  20. Yang X, Jiang L, Zhao W, Xiong Q, Zhao W, Yan X. Comparison of Ground-Based PM2.5 and PM10 Concentrations in China, India, and the U.S. Vol. 15, International Journal of Environmental Research and Public Health. 2018. https://doi.org/10.3390/ijerph15071382
  21. Hinds WC. Aerosol technology: Properties, behaviour and measurement of airborne particles. John Wiley and Sons, New York; 1999. 111–170 p
  22. Salma I, Balásházy I, Hofmann W, Záray G. Effect of physical exertion on the deposition of urban aerosols in the human respiratory system. J Aerosol Sci. 2002 Jul 1;33(7):983–97. https://doi.org/10.1016/S0021-8502(02)00051-4
  23. WHO Global Air Quality Guidelines [Internet]. 2021 [cited 2023 Jun 4]. Available from: https://www.who.int/news-room/questions-and-answers/item/who-global-air-quality-guidelines
  24. Putri AE. Reduction Effort of Pm 10 and Co With Phytoremediation Method Using Trees and Decorative Plants in Surabaya, Indonesia. In: International Conference on Natural Science and Environment (ICNSE) [Internet]. Sidney, Australia; 2016. p. 10–3. Available from: https://www.researchgate.net/publication/326550271
  25. Weyens N, Thijs S, Popek R, Witters N, Przybysz A, Espenshade J, et al. The role of plant–microbe interactions and their exploitation for phytoremediation of air pollutants. Int J Mol Sci. 2015;16(10):25576–604. https://doi.org/10.3390/ijms161025576
  26. Permen LHK No. 14 Tahun 2020 tentang Indeks Standar Pencemar Udara [JDIH BPK RI] [Internet]. [cited 2023 Jun 4]. Available from: https://peraturan.bpk.go.id/Home/Details/163466/permen-lhk-no-14-tahun-2020

Last update:

No citation recorded.

Last update: 2024-05-03 06:41:46

No citation recorded.