skip to main content

Perubahan Karakteristik Fisika-Kimia Blotong dari Industri Gula Rafinasi Selama di Penimbunan Terbuka

1Program Studi Magister Ilmu Lingkungan, Sekolah Ilmu Lingkungan, Universitas Indonesia, Jakarta Pusat 10430, Indonesia

2Kementerian Lingkungan Hidup dan Kehutanan, Jakarta Pusat 10270, Indonesia

Open Access Copyright 2025 Jurnal Kesehatan Lingkungan Indonesia under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Abstract

Latar belakang: Industri gula di Indonesia menghasilkan sekitar 120.218-190.440 ton blotong/tahun sebagai produk samping, yang berpotensi menghasilkan emisi gas rumah kaca (NO dan CO2), air lindi, dan bau yang tidak sedap. Hingga kini, belum ada regulasi khusus terkait pengelolaan blotong. Penelitian ini bertujuan untuk menganalisis perubahan karakteristik fisika-kimia blotong selama 2 bulan ditimbun di tempat penimbunan terbuka.

Metode: Sampel blotong diambil dari salah satu Industri Gula Rafinasi di Banten dalam dua kondisi: fresh blotong (Bl-01) dan blotong yang ditimbun selama 2 bulan (Bl-02). Data dikumpulkan melalui observasi lapangan dan analisis laboratorium. Sebanyak 13 parameter blotong (temperatur, warna, bau, konsistensi, kadar air, pH, kadar C-organik, kadar nitrogen, rasio C/N, kandungan sukrosa, kandungan kalium sebagai K2O, kandungan fosfor sebagai P2O5, dan kandungan kalsium sebagai CaO), dianalisis dan dibandingkan untuk melihat perubahan signifikan selama periode penimbunan. Data kemudian dianalisis menggunakan metode statistik deskriptif, melalui grafik, tabel, diagram, dan perhitungan persentase.

Hasil: Setelah 2 bulan penimbunan, analisis sampel Bl-01 dan Bl-02 menunjukkan adanya perubahan kimia-fisika, yaitu penurunan temperatur, intensitas warna, kadar air, kandungan sukrosa, dan pH blotong; meningkatnya kadar C-organik, rasio C/N, kandungan kalium, kandungan fosfor, dan kandungan kalsium pada blotong; bau blotong menjadi lebih masam, dengan tekstur blotong yang mengeras dan berpori, serta kadar nitrogen yang nilainya relatif stabil dari waktu ke waktu.

Simpulan: Penimbunan blotong di tempat terbuka selama periode waktu tertentu mengakibatkan perubahan sifat kimia-fisika limbah tersebut. Selain itu, penelitian ini juga menyoroti potensi blotong untuk dimanfaatkan melalui komposting.

 

ABSTRACT

Title: Changes in Physico-Chemical Characteristics of Blotong (Filter Cake) from Refined Sugar Industry in Open Dumping Field

Background: The sugar industry in Indonesia generates approximately 120,218-190,440 tons of filter cake (FC) per year as byproduct, which has the potential to release greenhouse gases (NO and CO2), leachate, and unpleasant odors. A key challenge in managing FC is the lack of regulations governing its disposal. This study aims to analyze the physical and chemical characteristic changes of FC over a 2-month period in an openddumpingffield.

Method: FC samples were collected from a Refining Sugar Industry in Banten in two conditions: fresh FC (Bl-01) and FC stored in an open dumping field for 2 months (Bl-02). Data were collected through field observations and laboratory analysis. Thirteen parameters of FC (temperature, color, odor, consistency, moisture content, pH, organic C-content, nitrogen content, C/N ratio, sucrose content, potassium content as K2O, phosphorus content as P2O5, and calcium content as CaO) were analyzed and compared to observe significant changes during the dumping period. Data were analyzed using descriptive statistics, presented through graphs, tables, diagrams, and percentage calculations.

Result: After 2 months, significant changes were observed, including a decrease in temperature, color intensity, moisture content, sucrose content, and pH of FC; an increase in organic carbon content, C/N ratio, potassium content, phosphorus content, and calcium content in FC; the odor became more acidic, the texture hardened and became porous, while nitrogen content remained stable over time.

Conclusion: Open dumping of FC over time causes significant changes in its physical-chemical characteristics. Additionally, this research also highlights the potential of FC to be utilized through composting.

Note: This article has supplementary file(s).

Fulltext View|Download |  EC
Etichal Clearance
Subject Kaji Etik
Type EC
  Download (76KB)    Indexing metadata
 ES
Ethical Statement
Subject Pernyataan Etik
Type ES
  Download (563KB)    Indexing metadata
 Turnitin
Turnitin
Subject
Type Turnitin
  Download (2MB)    Indexing metadata
 CTA
Copyrigh Transfer Agreement
Subject
Type CTA
  Download (395KB)    Indexing metadata
Keywords: Karakteristik Blotong; Limbah Padat; Industri Gula; Penimbunan Terbuka; Pencemaran Lingkungan
Funding: Direktorat Riset and Pengembangan, Universitas Indonesia

Article Metrics:

  1. United Nations. The 17 Goals [Internet]. 2023 [cited 2023 Aug 13]. Available from: https://sdgs.un.org/goals
  2. Kementerian Perindustrian. Tinjau Pabrik Gula, Kemenperin: Sektor Kritikal Berperan Penting Pulihkan Ekonomi. [Internet]. 2021 [cited 2023 July 19]. Available from: https://www.kemenperin.go.id/artikel/22745/Tinjau-Pabrik-Gula,-Kemenperin:-Sektor-Kritikal-Berperan-Penting-Pulihkan-Ekonomi
  3. Kementerian Perindustrian. Pasok Sektor Industri Dan Penuhi Pasar Ekspor, Kemenperin Monitor Produktivitas Pabrik Gula Rafinasi. [Internet]. 2021 [cited 2023 Sept 09]
  4. Sugiyanto C. Permintaan Gula di Indonesia. Jurnal Ekonomi Pembangunan. 2017;8(2):113–127. Available from: https://doi.org/10.23917/jep.v8i2.1036
  5. Dharma SU, Rajabiah N, Setyadi C. Pemanfaatan Blotong dan Bagase Menjadi Biobriket. Jurnal Teknik Mesin Universitas Muhammadiyah Metro. 2017;1(6):92–102. Available from: https://doi.org/10.24127/trb.v6i1.472
  6. Lianasari AE, Marthinus, Angrumpaka. Alternatif Pemanfaatan Limbah Padat Pabrik Gula Madukismo Dalam Teknologi Beton. Jurnal Atma Inovasia (JAI). 2022;2(3):269–273. https://doi.org/10.24002/jai.v2i3.5739
  7. Lima IM, Beacorn JA. Targeting a Sustainable Sugar Crops Processing Industry: A Review (Part I) By-Product Applications. Sugar Tech. 2022;24(4):970–991. Available from: https://doi.org/10.1007/s12355-022-01169-5
  8. Lolo EU, Widianto, Gunawan IR, Pambudi YS, Ngalung AD. Analisa Dampak Lingkungan Terhadap Budidaya Tebu dengan Life Cycle Assesment Menggunakan Open LCA 1.10.3. Serambi Engineering. 2022;7(3):3597–3608
  9. Novianti R, Syaukat Y, Ekayani M. Pengelolaan dan Analisis Nilai Tambah By-Products Industri Gula (Studi Kasus di Pabrik Gula Gempolkrep, Mojokerto, Jawa Timur). Jurnal Ilmu Pertanian Indonesia. 2021;26(3):400–405. Available from: https://doi.org/10.18343/jipi.26.3.400
  10. Wongarmat W, Reungsang A, Sittijunda S, Chu CY. Anaerobic Co-Digestion of Biogas Effluent and Sugarcane Filter Cake for Methane Production. Journal of Biomass Conversion and Biorefinery. 2022;12(1):901–912. https://doi.org/10.1007/s13399-021-01305-3
  11. Budiono. Kandungan Limbah Blotong. 2023
  12. Vidi. Pengelolaan Limbah Industri Gula. 2023
  13. Irwan. Pengelolaan Limbah Industri Gula. 2023
  14. Alfar L, Ladera J, Melitares R, Cagas R, Datoon MG, Tizo M, Ido A, Arazo R. Sugarcane Press Mud and Coconut Shell Ash: Promising Industrial Wastes as Admixtures for Concrete Block. International Journal of Pavement Research and Technology. 2023;16:621–630. Available from: https://doi.org/10.1007/s42947-022-00152-3
  15. Arelli VL, Mamindlapelli NK, Begum S, Juntupally S, S S, Maddala RK. Press mud and bagasse from sugar mill. Biomass and Bioenergy. 2022;166:1–11. Available from: https://doi.org/10.1016/j.biombioe.2022.106625
  16. Balakrishnan M, Batra VS. Valorization of solid waste in sugar factories with possible applications in India: A review. Journal of Environmental Management. 2011;92(11):2886–2891. Available from: https://doi.org/10.1016/j.jenvman.2011.06.039
  17. Gupta N, Tripathi S, Balomajumder C. Characterization of pressmud: A sugar industry waste. Fuel. 2011;90(1):389–394. Available from: https://doi.org/10.1016/j.fuel.2010.08.021
  18. Sasongko P, Tantalu L. Fermentasi Blotong Limbah Pabrik Gula Krebet dan Rumen Sapi dalam Produksi Biogas. Buana Sains. 2019;(18):131-138. https://doi.org/10.33366/bs.v18i2.1186
  19. Harjanti RS. Pupuk Organik dari Limbah Pabrik Gula Madukismo dengan Starter Mikrobia Pengurai Untuk Menambah Kandungan N, P, K. J Chemica. 2017;1(4):1-7. https://doi.org/10.26555/chemica.v4i1.6107
  20. Supari, Gunawan, B., & Taufik. Analisa Kandungan Kimia Pupuk Organik Dari Blotong Tebu Limbah Dari Pabrik Gula Trangkil. J Agroteknol. 2015;4(6):10–14
  21. Kementerian Pertanian. Analisis Kinerja Perdagangan Gula Pasir [Internet]. 2021 [cited 2023 Aug 18]. https://satudata.pertanian.go.id/assets/docs/publikasi/Buku_Analisis_Kinerja_Komoditas_Gula _Tahun_2021.pdf
  22. Susanti DA, Siswanto P. Kualitas Vermikompos Limbah Blotong Tebu (Saccharum oficinarum L.) dengan Variasi Jenis Cacing. J Biotek. 2022;10(2):240–252. Available from: https://doi.org/10.24252/jb.v10i2.31673
  23. Muhsin A. Pemanfaatan Limbah Hasil Pengolahan Pabrik Tebu Blotong Menjadi Pupuk Organik. Proc Ind Eng Conf. 2011;5:1–9
  24. Brilliantina A, Adhamatika A, Elok KNS, Wijaya R. Penerapan LCA Untuk Mengurangi Dampak Lingkungan Pada Proses Produksi Gula Kristal Putih Di Bondowoso. JUSTER: J Sains Terap. 2023;2(1):809–820. https://doi.org/10.57218/juster.v2i1.474
  25. Ma S, Zhou C, Pan J, Yang G, Sun C, Liu Y, Chen X, Zhao Z. Leachate from MSW Landfills in A Global Perspective. J Clean Prod. 2022;333:1-10. Available from: https://doi.org/10.1016/j.jclepro.2021.130234
  26. Peraturan Pemerintah RI No. 22 Tahun 2021 tentang Penyelenggaraan Perlindungan dan Pengelolaan Lingkungan Hidup
  27. Peraturan Menteri Lingkungan Hidup dan Kehutanan No. 19 tahun 2021 tentang Tata Cara Pengelolaan Limbah Non-B3
  28. Nyonje EO, Njogu P, Kinyua R. Assessment of The Potential for Utilization of Sugarcane Derived Press Mud for Biogas Generation In South Nyanza Sugarcane Zones, Kenya. J Sustainable Res Eng. 2014;1(4)
  29. Sugiyono. Metode Penelitian Kuantitatif, Kualitatif, dan RnD. Cetakan-27. Jakarta: Alfabeta; 2017
  30. Nadirah, Pramana AD, Zari N. Metodologi Penelitian: Kualitatif, Kuantitatif, Mix Method (Mengelola Penelitian dengan Mendeley dan Nvivo). Safrinal, editor. Cetakan Pertama. Azka Pustaka; 2022
  31. Creswell JW. Research Design Qualitative, Quantitative, and Mixed Methods Approaches. Third Edition. SAGE Publications; 2009
  32. Pratama L, Ali M, Destiana. Pengaruh Berbagai Aktivator Terhadap Perubahan Suhu Pada Proses Pengomposan Blotong. Jurnal Simbiosis. 2024;1(1)
  33. Simanjuntak MC, Degei A, Agapa E. Quality Test of Pineapple Skin Fermentation With Different States. Jurnal Satya Wiyata Mandala. 2023;4(1)
  34. Pratama KB, Hendrawan Y, Lutfi M. Pengaruh Ukuran dan Bahan Variasi Komposisi Sampah Organik terhadap Karakteristik Biobriket. Jurnal Keteknikan Pertanian Tropis dan Biosistem. 2020;8(1):69–77. Available from: https://doi.org/10.21776/ub.jkptb.2020.008.01.07
  35. Sutanto MS. Titrasi Potensiometri. Jakarta: Pustaka UT; 2017
  36. Lestari LC, Felina K, Awaliah A, Zulhan Arif. Potensiometri dan Konduktometri. J. FMIPA IPB. 2021;3(1)
  37. Pandi JYS, Nopsagiarti T, Okalia D. Analisis C-Organik, Nitrogen, Rasio C/N Pupuk Organik Cair dari Beberapa Jenis Tanaman Pupuk Hijau. Universitas Islam Kuantan Singingi. 2023;12(1)
  38. Reichert JM, Morales B, Lima EM, de Bastos F, Morales CAS, de Araújo EF. Soil Morphological, Physical and Chemical Properties Affecting Eucalyptus Spp. Productivity On Entisols And Ultisols. Soil Tillage Res. 2023;226. https://doi.org/10.1016/j.still.2022.105563
  39. Amalia D, Fajri DR. Analisis Kadar Nitrogen Dalam Pupuk Urea Prill dan Granule Menggunakan Metode Kjeldahl Di PT Pupuk Iskandar Muda. Quimica: J Kim Sains Terap. 2020;2(1). https://doi.org/10.33059/jq.v2i1.2639
  40. Rahmawati S, Laili S, Zayadi H. Pengaruh Lama Pengomposan & Variasi Jumlah Cacing Selama Vermikomposting Pada Limbah Blotong Tebu. J Ilm Biosaintropis. 2023;9(1). Available from: https://doi.org/10.33474/e-jbst.v9i1.361
  41. Lubis N, Sofiyani S, Junaedi EC. Penentuan Kualitas Madu Ditinjau dari Kadar Sukrosa dengan Metode Luff Schoorl. Jurnal Sains Dan Kesehatan. 2022;4(3):290–297. Available from: https://doi.org/10.25026/jsk.v4i3.1050
  42. Iksen, Haro, G., & Masfria. Determination of Potassium, Calcium, And Sodium Level in Fresh And Boiled Chives (Allium schoenoprasum L.) Leaves by Atomic Absorption Spectrophotometry. J Pharmaceut Sci (JPS). 2019;2(2). https://doi.org/10.36490/journal-jps.com.v2i2.22
  43. Kern DQ. Process Heat Transfer. New York: McGraw-Hill; 1965
  44. Mikheyev M. Fundamentals of Heat Transfer. New York: John Willey & Sons Inc.; 1986
  45. Kaleka, N. Pintar Membuat Kompos: Sampah Rumah Tangga dan Limbah Pertanian. Jakarta: Pustaka Baru, 2020
  46. Meng, L., Li, W., Zhang, S., Wu, C., & Wang, K. Effects of Sucrose Amendment on Ammonia Assimilation. Bioresource Technology. 2016;210:160–166. Available from: https://doi.org/10.1016/j.biortech.2016.01.094
  47. Altay BN, Husovska V, Pekarovicova A, & Fleming PD. Formulating Pantone Colors by Unused Base Inks. Color Research and Application. 2019;44(6), 910–916. Available from: https://doi.org/10.1002/col.22430
  48. Saranraj P, Stella D. Composting of Sugar Mill Wastes: A Review. World Applied Sciences Journal. 2014;31(12):2029–2044. Available from: https://doi.org/10.22233/20412495.1014.31
  49. Prabhavathi N, Parama VRR. Effect of Sugar Industry Solid Waste Pressmud and Bio Compost On Soil Physical And Chemical Properties. Journal of Pharmacognosy and Phytochemistry. 2019;8(3)
  50. Shi XM, Wu FM, Jing B, Wang N, Xu LL, Pang SF, Zhang YH. Hygroscopicity of Internally Mixed Particles Composed of (NH4)2SO4 and Citric Acid Under Pulsed RH Change. Chemosphere. 2017;3(2), 532–540. Available from: https://doi.org/10.1016/j.chemosphere.2017.09.024
  51. Uygur A. An Overview of Oxidative And Photooxidative Decolorisation Treatments of Textile Waste Water. J Stud Dyn Change (JSDC). 1997;113(7). Available from: https://doi.org/10.1111/j.1478-4408.1997.tb01901.x
  52. Lindsay, M. A. Making Sense Of Waste: Fermentative Production of Flavour And Aroma Compounds From Agro Industrial By-Products. Auckland: Auckland Research & Repository. 2019
  53. Dotaniya ML, Datta SC, Biswas DR, Dotaniya CK. Use of Sugarcane Industrial By-Products For Soil Health. Int J Recycl Org Waste Agric. 2016;5(3):185–194. Available from: https://doi.org/10.1007/s40093-016-0132-8
  54. Rappert S, Müller R. Odor compounds in waste gas emissions from agricultural operations and food industries. Waste Manag. 2005;25(9):887–907. Available from: https://doi.org/10.1016/j.wasman.2005.07.008
  55. Siddiqui WA, Waseem M. A Comparative Study of Sugar Mill Treated and Untreated Effluent- A Case Study. Orient J Chem. 2012;28(4). https://doi.org/10.13005/ojc/280451
  56. Miller GT, Spoolman SE. Environmental Science. USA: Cengage Learning; 2016
  57. Rahayona D, Sunarsih E, Egit KF, Azzarah ND. Analysis Of Environmental Quality Around TPA Sukawinatan. Higiene J Kesehat Lingkungan. 2024;9(2):64-69. Available from: https://doi.org/10.24252/higiene.v9i2.36459
  58. Siahaan NHT. Hukum Lingkungan dan Ekologi. Jakarta: Erlangga; 2004
  59. Sabila AT, Highall AR, Purbasari A, Perwiro D, Sulistywati E, Widianto AA. Analisis Pengaruh Limbah Pabrik Gula Rejoso Manis Indo Terhadap Pencemaran Lingkungan Masyarakat Rejoso dan Umbuldamar. J Integr Harmoni Innov Ilmu-Ilmu Sos. 2022;2(4):322-332. Available from: https://doi.org/10.17977/um063v2i4p322-332
  60. Rofifah Y. Dampak Limbah Pabrik Gula Madukismo Terhadap Kesehatan Masyarakat. J Fisipol UMY. 2019;1(2)
  61. Abidin A, Purnomo CW, Cahyono RB. Hydro-char Production From Press-Mud Wastes of The Sugarcane Industry by Hydrothermal Treatment with Natural Zeolite Addition. AIP Conf. 2018;1. https://doi.org/10.1063/1.5065009
  62. Mohamad M, Osman NH, Rahim MKIA, Abustan I. Suitability of Pressmud as As A Booster In Soil Fertility. IOP Conf Ser Earth Environ Sci. 2023;1143(1). Available from: https://doi.org/10.1088/1755-1315/1143/1/012001
  63. Tom AP, Pawels R, Haridas A. Biodrying Process: A Sustainable Technology for Treatment of Municipal Solid Waste With High Moisture Content. Waste Manag. 2016;49:64–72. https://doi.org/10.1016/j.wasman.2016.01.004
  64. Ismayana A, Indrasti NS, Maddu A, Fredy A. Factors Of Initial C/N And Aeration Rate In Co-Composting Process Of Bagasse And Filter Cake. J Teknol Ind Pertan. 2022;22(3):173–179
  65. Treybal RE. Mass Transfer Operation. Third Edition. USA: McGraw-Hill; 1981
  66. Wang LK, Wang MHS. Understanding Evaporation, Transpiration, Evapotranspiration, Precipitation And Runoff Volume For Agricultural Waste Management. Vol. 4. New South Wales: Lenox Institute Press. 2022
  67. Juradi AM, Tando E, Saida. Innovation Technology of Blotong Compos to Repair Soil Fertility and Increasing Plant Sugarcane Productivity. J Agrotek. 2020;4(1). Available from: https://doi.org/10.33096/agrotek.v4i1.93
  68. Sánchez-Monedero MA, Cegarra J, García D, Roig A. Chemical and Structural Evolution of Humic Acids During Composting. Biodegradation. 2002;13:361–371. Available from: https://doi.org/10.1023/A:1022888231982
  69. Satisha GC, Devarajan L. Humic Substances & Their Complexation During Composting of Pressmud. Commun Soil Sci Plant Anal. 2005;36(7–8):805–818. Available from: https://doi.org/10.1081/CSS-200049454
  70. Ali M, Mirwan M. Utilization of Blotong as an Activator Organic Fertilizer. J Community Serv. 2021;3(2). Available from: https://doi.org/10.56670/jcs.v3i2.103
  71. Purnomo EA, Sutrisno E, Sumiyati S. Pengaruh Variasi C/N Rasio Terhadap Produksi Kompos dan Kandungan Kalium (K), Pospat (P) Dari Batang Pisang Dalam Sistem Vermicomposting. J Tek Lingkungan. 2017;6(2)
  72. Lim LY, Lee CT, Bong CPC, Lim JS, Sarmidi MR, Klemes JJ. A Review on The Impacts of Compost on Soil Nitrogen Dynamics. Chem Eng Trans. 2018;63:349–354
  73. Bueno P, Tapias R, López F, Díaz MJ. Optimizing Composting Parameters for Nitrogen Conservation in Composting. Bioresour Technol. 2008;99(11):5069–5077. https://doi.org/10.1016/j.biortech.2007.08.087
  74. Magill AH, Aber JD, Berntson GM, McDowell WH. Long-term Nitrogen Additions And Nitrogen Saturation In Two Temperate Forests. Ecosystems. 2000;3(3):238–253. Available from: https://doi.org/10.1007/s100210000023
  75. González LML, Reyes IP, Romero OR. Anaerobic co-digestion of sugarcane press mud with vinasse on methane yield. Waste Manag. 2017;68:139–145. Available from: https://doi.org/10.1016/j.wasman.2017.07.016
  76. Gunawan R, Kusmiadi R, Prasetiyono E. Study of Utilization of Organic Waste of Green Mustard (Brassica juncea L.) and Crab Waste (Portunus pelagicus) for Producing Liquid Compost. Enviagro: J Pertan Lingkungan. 2015;8(1)
  77. Setyawati H, Sari SA, Nathania D, Zahwa N. The Effect of Variations of Vegetable Solid Waste Types and Em4 Levels on Composting. J Atmosphere. 2021;2(2). Available from: https://doi.org/10.36040/atmosphere.v2i2.4102
  78. Kusmiyarti TB. The Quality of Compost on Various Combinations of Organic Raw Materials. J Agrotop. 2013;3(1)
  79. Utomo MAP, Shovitri M. Bakteri Tanah Pendegradasi Bahan Organik Desa Talango, Pulau Poteran, Sumenep. J Sains POMITS. 2014;3(2)

Last update:

No citation recorded.

Last update: 2025-02-22 06:43:52

No citation recorded.