1Program Studi Kesehatan Masyarakat Program Sarjana, Universitas Respati Yogyakarta, Jalan Raya Tajem KM.1,5, Maguwoharjo, Depok, Kenayan, Wedomartani, Kec. Ngemplak, Kabupaten Sleman, Daerah Istimewa Yogyakarta 55282, Indonesia
2Dinas Kesehatan Daerah Istimewa Yogyakarta 4, Jl Gondosuli No. 6, Semaki, Umbulharjo, Kota Yogyakarta, Indonesia
BibTex Citation Data :
@article{JKLI66917, author = {Dwi Rahayuningtyas and Nur Pascawati and Azir Alfanan and Rega Dharmawan}, title = {Model Prediksi Kasus DBD Berdasarkan Perubahan Iklim: Cohort Study dengan Data NASA di Kabupaten Bantul}, journal = {Jurnal Kesehatan Lingkungan Indonesia}, volume = {24}, number = {1}, year = {2025}, keywords = {DBD; Kabupaten Bantul; Model Prediksi; NASA; Perubahan Iklim}, abstract = { Latar belakang: Kasus DBD di Provinsi Daerah Istimewa Yogyakarta masih cenderung tinggi terutama di Kabupaten Bantul dengan Incidance Rate ≥ 49/100.000 penduduk. Peningkatan kasus DBD dipengaruhi oleh perubahan iklim karena iklim menjadi ancaman kesehatan terbesar bagi manusia dan dapat mendukung proses transmisi penularan penyakit oleh vektor. Perubahan iklim dapat menggambarkan pola kejadian kasus DBD masa lampau dan masa kini yang berhubungan dengan variasi suhu, kelembaban relative 2 meter, tekanan udara, dan pengawanan dengan tujuan untuk membuat suatu model prediksi kasus DBD dari variabel perubahan iklim yang paling berpengaruh di Kabupaten Bantul menggunakan data NASA . Metode: Desain penelitian ini menggunakan cohort retrospektif dengan data sekunder iklim NASA dan data kasus DBD dari Dinas Kesehatan Provinsi Daerah Istimewa Yogyakara selama 15 tahun (2008-2022). Analisis data dilakukan menggunakan uji normalitas Kolmogorov Smirnof , uji Correlation Pearson, dan uji regresi linier berganda. Hasil: Hasil penelitian menunjukkaan variasi iklim seperti suhu udara bola kering, suhu bola basah, suhu titik embun, kelembaban relatif 2 meter, dan pengawanan berhubungan terhadap kasus DBD, sedangkan suhu permukaan bumi dan tekanan udara tidak berhubungan dengan kasus DBD di Kabupaten Bantul. Model persamaan regresi liniear yang ditemukan yakni Kasus DBD = -1556,679+(42,357*Suhu Udara Bola Kering)+ (7,521*Kelembaban Relative 2 Meter)+(-1,338*Pengawanan) (R 2 =21,1%) dengan uji asumsi klasik terpenuhi. Simpulan: Model prediksi ini dapat digunakan sebagai upaya early warning system dalam program pencegahan dan pemberantasan kasus DBD. ABSTRACT Tittle: Prediction Model of DHF Cases Based on Climate Change : Cohort Study with NASA Dat a in Bantul Regency Background: DHF cases in Yogyakarta Special Region Province still tend to be high, especially in Bantul Regency with an incidence rate ≥ 49/100,000 population. The increase in DHF cases can be influenced by climate change because climate is the biggest health threat to humans and can support the transmission process of disease transmission by vectors. Climate change can describe the pattern of past and present DHF cases associated with variations in temperature, 2-meter relative humidity, air pressure, and cloudiness to make a prediction model of DHF cases from the most influential climate change variabels in Bantul Regency using NASA data. Method: This study design used a retrospective cohort with secondary data of NASA climate and DHF case data from the Provincial Health Office of Yogyakara Special Region for 15 years (2008-2022). Data were analyzed using Kolmogorov Smirnof normality test, Pearson Correlation test, and multiple linear regression test. Result: The results showed that climatic variations such as dry bulb temperature, wet bulb temperature, dew point temperature, 2 meter relative humidity, and cloudiness were related to DHF cases, while land surface temperature and air pressure were not related to DHF cases in Bantul Regency. The linear regression equation model found is DHF cases = -1556.679 + (42.357*Dry Bulb Air Temperature) + (7.521*Relative Humidity 2 Meters) + (-1.338*Cloud Amount) (R2 = 21.1%) with the classical assumption test fulfilled. . Conclusion : This prediction model can be used as an early warning system in the prevention and eradication program of DHF cases. }, issn = {2502-7085}, pages = {84--94} doi = {10.14710/jkli.24.1.84-94}, url = {https://ejournal.undip.ac.id/index.php/jkli/article/view/66917} }
Refworks Citation Data :
Latar belakang: Kasus DBD di Provinsi Daerah Istimewa Yogyakarta masih cenderung tinggi terutama di Kabupaten Bantul dengan Incidance Rate ≥ 49/100.000 penduduk. Peningkatan kasus DBD dipengaruhi oleh perubahan iklim karena iklim menjadi ancaman kesehatan terbesar bagi manusia dan dapat mendukung proses transmisi penularan penyakit oleh vektor. Perubahan iklim dapat menggambarkan pola kejadian kasus DBD masa lampau dan masa kini yang berhubungan dengan variasi suhu, kelembaban relative 2 meter, tekanan udara, dan pengawanan dengan tujuan untuk membuat suatu model prediksi kasus DBD dari variabel perubahan iklim yang paling berpengaruh di Kabupaten Bantul menggunakan data NASA.
Metode: Desain penelitian ini menggunakan cohort retrospektif dengan data sekunder iklim NASA dan data kasus DBD dari Dinas Kesehatan Provinsi Daerah Istimewa Yogyakara selama 15 tahun (2008-2022). Analisis data dilakukan menggunakan uji normalitas Kolmogorov Smirnof, uji Correlation Pearson, dan uji regresi linier berganda.
Hasil: Hasil penelitian menunjukkaan variasi iklim seperti suhu udara bola kering, suhu bola basah, suhu titik embun, kelembaban relatif 2 meter, dan pengawanan berhubungan terhadap kasus DBD, sedangkan suhu permukaan bumi dan tekanan udara tidak berhubungan dengan kasus DBD di Kabupaten Bantul. Model persamaan regresi liniear yang ditemukan yakni Kasus DBD = -1556,679+(42,357*Suhu Udara Bola Kering)+ (7,521*Kelembaban Relative 2 Meter)+(-1,338*Pengawanan) (R2=21,1%) dengan uji asumsi klasik terpenuhi.
Simpulan: Model prediksi ini dapat digunakan sebagai upaya early warning system dalam program pencegahan dan pemberantasan kasus DBD.
ABSTRACT
Tittle: Prediction Model of DHF Cases Based on Climate Change: Cohort Study with NASA Data in Bantul Regency
Background: DHF cases in Yogyakarta Special Region Province still tend to be high, especially in Bantul Regency with an incidence rate ≥ 49/100,000 population. The increase in DHF cases can be influenced by climate change because climate is the biggest health threat to humans and can support the transmission process of disease transmission by vectors. Climate change can describe the pattern of past and present DHF cases associated with variations in temperature, 2-meter relative humidity, air pressure, and cloudiness to make a prediction model of DHF cases from the most influential climate change variabels in Bantul Regency using NASA data.
Method: This study design used a retrospective cohort with secondary data of NASA climate and DHF case data from the Provincial Health Office of Yogyakara Special Region for 15 years (2008-2022). Data were analyzed using Kolmogorov Smirnof normality test, Pearson Correlation test, and multiple linear regression test.
Result: The results showed that climatic variations such as dry bulb temperature, wet bulb temperature, dew point temperature, 2 meter relative humidity, and cloudiness were related to DHF cases, while land surface temperature and air pressure were not related to DHF cases in Bantul Regency. The linear regression equation model found is DHF cases = -1556.679 + (42.357*Dry Bulb Air Temperature) + (7.521*Relative Humidity 2 Meters) + (-1.338*Cloud Amount) (R2 = 21.1%) with the classical assumption test fulfilled..
Conclusion: This prediction model can be used as an early warning system in the prevention and eradication program of DHF cases.
Note: This article has supplementary file(s).
Article Metrics:
Last update:
Last update: 2025-01-19 22:20:41
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Jurnal Kesehatan Lingkungan Indonesia (JKLI, p-ISSN: 1412-4939, e-ISSN:2502-7085) and Master Program of Environmental Health, Diponegoro University as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
JKLI journal and Master Program of Environmental Health, Diponegoro University, the Editors and the Advisory Editorial Board make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in the JKLI journal are the sole and exclusive responsibility of their respective authors and advertisers.The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form JKLI journal] The copyright form should be signed originally and send to the Editorial Office in the form of original mail or scanned document to jkli@live.undip.ac.id.
Jurnal Kesehatan Lingkungan Indonesia (e-ISSN: 2502-7085, p-ISSN: 1412-4939) is published by Master of Environmental Health, Faculty of Public Health, Universitas Diponegoro under Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats