skip to main content

Karakterisasi, Analisis Risiko Kesehatan dan Multiple-Path Particle Dosimetry (MPPD) Model Akibat Paparan Uap Las pada Pekerja Bengkel Pengelasan

1Magister Terapan Keselamatan dan Kesehatan Kerja, Sekolah Vokasi, Universitas Gajah Mada, Yogyakarta, Indonesia

2Health Safety Environmental Department, Concentrating Division, PT Freeport Indonesia, Indonesia

3Program Studi Magister Teknik Lingkungan, Fakultas Teknik Sipil dan Lingkungan, Institut Teknologi Bandung, Bandung, Indonesia

4 Program Doktor Teknik Lingkungan, Fakultas Teknik Sipil-Perencanaan-Kebumian, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

View all affiliations
Open Access Copyright 2024 Jurnal Kesehatan Lingkungan Indonesia under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Abstract

Latar belakang: Pengelasan di industri pengolahan bijih mineral menimbulkan risiko kesehatan bagi pekerja akibat paparan uap las yang mengandung logam berbahaya seperti krom, mangan, tembaga, dan besi. Penelitian ini mengevaluasi risiko kesehatan pekerja di sebuah bengkel las dengan menganalisis data paparan personal dan karakteristik unsur logam spesifik dalam uap las selama periode 2021-2024.

Metode: Multi-Path Particulate Dosimetry (MPPD) digunakan untuk menganalisis deposisi partikel di saluran pernapasan pekerja dan pengukuran kadar logam pada uap las menggunakan metode NIOSH 7300 menggunakan instrumen ICP (Inductively Coupled Plasma). Analisis risiko dilakukan untuk menilai potensi peningkatan risiko kesehatan, baik karsinogenik maupun non-karsinogenik.

Hasil: Penelitian menunjukkan bahwa pekerja terpapar uap las dengan konsentrasi logam berbahaya yang tinggi, terutama krom, mangan, dan besi. Nilai risiko karsinogenik (ECR) untuk krom mencapai puncaknya pada tahun 2022 dengan nilai 7,8x10-5, sementara nilai risiko non-karsinogenik logam  mangan mencapai nilai tertinggi pada tahun yang sama dengan HQ sebesar 1568 tertinggi selama empat tahun terakhir, mengindikasikan terjadinya peningkatan risiko kesehatan. Simulasi model MPPD menunjukkan laju deposisi partikel total fume yang cukup tinggi pada tahun 2022, menunjukkan laju deposisi partikel total fume sebesar 0,097 μg/menit dan deposisi partikel total fume per area mencapai 1,27.10-4μg/m2 selama periode pengamatan. Tingginya tingkat paparan dan deposisi partikel ini mengindikasikan risiko tinggi terjadinya penyakit saluran pernafasan, termasuk penyakit paru obstruksi kronis (PPOK) hingga kanker paru. Analisis risiko lebih lanjut mengkonfirmasi hubungan antara paparan  krom dan mangan dengan peningkatan risiko kanker dan efek kesehatan non-kanker. Untuk mengurangi risiko kesehatan pekerja, disarankan penerapan pengendalian teknik seperti perbaikan sistem ventilasi lokal yang efektif, seperti penggunaan fume extractor atau fume hood, serta penggunaan Alat Pelindung Diri (APD) pernafasan berupa respirator dan pemeriksaan kesehatan berkala juga perlu dilakukan..

Simpulan: Pekerja pengelasan di industri pengolahan bijih mineral menghadapi risiko kesehatan yang tinggi akibat paparan uap las mengandung logam berbahaya. Perlu adanya tindakan pengendalian risiko yang komprehensif untuk melindungi kesehatan pekerja.

 

ABSTRACT

Tittle: Characterization, Health Risk Analysis, and Multiple-Path Particle Dosimetry (MPPD) Model Due to Welding Fume Exposure in Welding Workshop Workers

Introduction: Welding in the mineral ore processing industry poses significant health risks to workers due to exposure to welding fumes containing hazardous metals such as chromium, manganese, copper, and iron. This study evaluated the health risks of workers in a welding workshop by analyzing personal exposure data and the characteristics of specific metallic elements in welding fumes over the period 2021-2024.

Methods: Multi-Path Particulate Dosimetry (MPPD) was used to analyze particle deposition in the respiratory tract of workers, and the metal content in welding fumes was measured using the NIOSH 7300 method with an Inductively Coupled Plasma (ICP) instrument. Risk assessment was conducted to evaluate the potential increase in both carcinogenic and non-carcinogenic health risks.

Results: The study showed that workers were exposed to high concentrations of hazardous metals in welding fumes, particularly chromium and manganese. Excess carcinogenic risk (ECR) for chromium peaked in 2022 with a value of 7.8x10-5, while the non-carcinogenic risk (HQ) for manganese reached its highest value in the same year at 1568, indicating an increased health risk. MPPD model simulations showed a significant rate of total fume particle deposition in 2022, with a deposition rate of 0.097 μg/min and a deposition area of 1.27x10-4 μg/m². These high exposure and particle deposition levels indicate a high risk of respiratory diseases, including chronic obstructive pulmonary disease (COPD) and lung cancer. Further risk analysis confirmed the association between exposure to chromium and manganese and an increased risk of cancer and non-cancerous health effects. To reduce worker health risks, it is recommended to implement engineering controls such as improved local ventilation systems, such as using fume extractors or fume hoods, as well as the use of respiratory personal protective equipment (PPE) and regular medical check-up.

Conclusion: Welders in the mineral ore processing industry face significant health risks due to exposure to welding fumes containing hazardous metals. Comprehensive risk control measures are needed to protect workers' health.

Note: This article has supplementary file(s).

Fulltext View|Download |  CTA
Copyrigh Transfer Agreement
Subject
Type CTA
  Download (512KB)    Indexing metadata
 ES
Etichal Statement
Subject
Type ES
  Download (578KB)    Indexing metadata
 Turnitin
Turnitin
Subject
Type Turnitin
  Download (3MB)    Indexing metadata
Keywords: uap las; logam berat; risiko kesehatan; NIOSH 7300; MPPD.

Article Metrics:

  1. Khedr M, Hamada A, Järvenpää A, Elkatatny S, Abd-Elaziem W. Review on the solid-state welding of steels: diffusion bonding and friction stir welding processes. Metals. 2022;13(1):54. https://doi.org/10.3390/met13010054
  2. Bakri SFZ, Hariri A, Ismail M. Occupational health risk assessment of inhalation exposure to welding fumes. Int J [Internet]. 2020 [dikutip 26 Agustus 2024];8(1.2). Tersedia pada: https://www.researchgate.net/profile/Siti_Zainal_Bakri/publication/344606348_Occupational_Health_Risk_Assessment_of_Inhalation_Exposure_to_Welding_Fumes/links/5f83fa92a6fdccfd7b5aa029/Occupational-Health-Risk-Assessment-of-Inhalation-Exposure-to-Welding-Fumes.pdf
  3. Takahashi J, Nakashima H, Fujii N. Fume particle size distribution and fume generation rate during arc welding of cast iron. Industrial Health. 2020;58(4):325–34. https://doi.org/10.2486/indhealth.2019-0161
  4. Peixoto MS, de Oliveira Galvão MF, Batistuzzo de Medeiros SR. Cell death pathways of particulate matter toxicity. Chemosphere. 1 Desember 2017;188:32–48. https://doi.org/10.1016/j.chemosphere.2017.08.076
  5. Krishnaraj J, Kowshik J, Sebastian R, Raghavan SC, Nagini S. Exposure to welding fumes activates DNA damage response and redox-sensitive transcription factor signalling in Sprague-Dawley rats. Toxicology letters. 2017;274:8–19. https://doi.org/10.1016/j.toxlet.2017.04.001
  6. Sjögren B, Broberg K, Tinnerberg H, Albin M, Gustavsson P, Johanson G. An occupational exposure limit for welding fumes is urgently needed. Scandinavian Journal of Work, Environment & Health. 2022;48(1):1. https://doi.org/10.5271/sjweh.4002
  7. Gourzoulidis GA, Bouroussis CA, Achtipis A, Kazasidis M, Pantelis D, Markoulis A, dkk. Photobiological hazards in shielded metal arc welding. Physica Medica. 2023;106:102520. https://doi.org/10.1016/j.ejmp.2022.102520
  8. Siti Salami IR. Kesehatan dan Keselamatan Lingkungan Kerja. Edisi Revisi. Yogyakarta: UGM Press; 2021
  9. ACGIH. American Conference of Governmental Industrial Hygiene: TLVs and BEIs, Based on the documentation of the threshold limit values for chemical substances and physical agents and biological exposure indices. Cincinnati, Ohio, The United States; 2024
  10. Leidel NA, Busch KA, Lynch J. Occupational exposure sampling strategy manual. National Institute for Occupational Safety and Health., editor. Januari 1977; Tersedia pada: https://stacks.cdc.gov/view/cdc/11158
  11. Mihelcic JR, Zimmerman JB. Chapter 6: Environmental Risk. Dalam: Environmental Engineering: Fundamentals, Sustainability, Design. 2nd ed. United States: Willey; 2012
  12. US Environmental Protection Agency. Risk Assessment Guidance for Superfund: pt. A. Human health evaluation manual. Vol. 1. US Environmental Protection Agency; 1989
  13. ASTDR. Agency for Toxic Substances and Disease Registry: Guidance for Inhalation Exposures. US Department of Health and Human Services, Public Health Service. 2021;
  14. NIOSH. National Institute for Occupational Safety and Health: Manual of Analytical Methods (NMAMTM), 4th ed., Elements by ICP, Methods 7300. US Department of Health and Human Services, Centers for Disease Control and Prevention, DHHS (NIOSH) Publication No. 2002-129S; 1994
  15. NIOSH. National Institute for Occupational Safety and Health: Workplace atmospheres, size fraction definitions for measurement of airborne particles in the workplace. CEN Standard EN. 1992;481:117–24
  16. Applied Research Associates, Inc. ARA - MPPD: Multiple-Path Particle Dosimetry Model [Internet]. 2020 [dikutip 16 Agustus 2024]. Tersedia pada: https://www.ara.com/mppd/
  17. Manojkumar N, Srimuruganandam B, Nagendra SS. Application of multiple-path particle dosimetry model for quantifying age specified deposition of particulate matter in human airway. Ecotoxicology and Environmental Safety. 2019;168:241–8. https://doi.org/10.1016/j.ecoenv.2018.10.091
  18. Miller FJ, Asgharian B, Schroeter JD, Price O. Improvements and additions to the Multiple Path Particle Dosimetry model. Journal of Aerosol Science. 1 September 2016;99:14–26. https://doi.org/10.1016/j.jaerosci.2016.01.018
  19. Valavanidis A. Oxidative Stress and Pulmonary Carcinogenesis Through Mechanisms of Reactive Oxygen Species. How Respirable Particulate Matter, Fibrous Dusts, and Ozone Cause Pulmonary Inflammation and Initiate Lung Carcinogenesis. Dalam: Chakraborti S, Chakraborti T, Das SK, Chattopadhyay D, editor. Oxidative Stress in Lung Diseases [Internet]. Singapore: Springer Singapore; 2019 [dikutip 24 Juni 2024]. hlm. 247–65. Tersedia pada: http://link.springer.com/10.1007/978-981-13-8413-4_13.
  20. Chen YH, Nguyen D, Brindley S, Ma T, Xia T, Brune J, dkk. The dependence of particle size on cell toxicity for modern mining dust. Scientific Reports. 2023;13(1):5101. https://doi.org/10.1038/s41598-023-31215-5
  21. NIH. National Center for Biotechnology Information. PubChem Compound Database. [Internet]. [dikutip 30 Agustus 2024]. Tersedia pada: https://pubchem.ncbi.nlm.nih.gov/
  22. Karyakina NA, Shilnikova N, Farhat N, Ramoju S, Cline B, Momoli F, dkk. Biomarkers for occupational manganese exposure. Critical Reviews in Toxicology [Internet]. 14 September 2022 [dikutip 30 Agustus 2024]; Tersedia pada: https://www.tandfonline.com/doi/abs/10.1080/10408444.2022.2128718
  23. Soemirat J. Analisis risiko kesehatan lingkungan. (No Title). 2013;
  24. McDermott H. Handbook of ventilation for contaminant control. 1985 [dikutip 30 Agustus 2024]; Tersedia pada: https://www.osti.gov/biblio/7253446
  25. Rosli NN, Yasak MF. Portable Local Exhaust Ventilation Unit for Welding Fumes. Progress in Engineering Application and Technology. 2021;2(1):972–8
  26. Knott P, Csorba G, Bennett D, Kift R. Welding Fume: A Comparison Study of Industry Used Control Methods. Safety. 2023;9(3):42. https://doi.org/10.3390/safety9030042
  27. Ng CS. A study of the effectiveness of local exhaust ventilation (LEV) in training facilities building using computational fluid dynamics (CFD) approach [Internet] [PhD Thesis]. Universiti Tun Hussein Malaysia; 2013 [dikutip 16 Oktober 2024]. Tersedia pada: http://eprints.uthm.edu.my/id/eprint/1999
  28. Hasan NH, bin Said MR, Leman AM, Asmuin N. Validate of Local Exhaust Ventilation (LEV) Performance through Analytical, Experimental and Computational Fluid Dynamic (CFD): A Case Study Model. Applied Mechanics and Materials. 2014;554:670–4. https://doi.org/10.4028/www.scientific.net/AMM.554.670
  29. Dhillon BS. Engineering safety: fundamentals, techniques, and applications [Internet]. Vol. 1. World Scientific Publishing Company; 2003 [dikutip 30 Agustus 2024]. Tersedia pada: https://books.google.com/books?hl=en&lr=&id=P_E7DQAAQBAJ&oi=fnd&pg=PR7&dq=fundamental+safety+engineering&ots=I1rt6XHzun&sig=P3_d20OBWZZzbn7-He2M9ixIROM
  30. Santandrea A, Chazelet S. Respiratory protective device: One size to fit them all? Journal of Occupational and Environmental Hygiene. 3 Juni 2023;20(5–6):226–39. https://doi.org/10.1080/15459624.2023.2205466
  31. Kaptsov VA, Chirkin AV. The selection of the respirators as a result of studies of their workplace protection factors. 2019 [dikutip 16 Oktober 2024]; Tersedia pada: https://www.cabidigitallibrary.org/doi/full/10.5555/20203372235.
  32. Lehnert M, Pesch B, Lotz A, Pelzer J, Kendzia B, Gawrych K, dkk. Exposure to Inhalable, Respirable, and Ultrafine Particles in Welding Fume. The Annals of Occupational Hygiene. 1 Juli 2012;56(5):557–67
  33. Wippich C, Rissler J, Koppisch D, Breuer D. Estimating Respirable Dust Exposure from Inhalable Dust Exposure. Annals of Work Exposures and Health. 30 April 2020;64(4):430–44. https://doi.org/10.1093/annweh/wxaa016
  34. Brown JS. Chapter 27 - Deposition of Particles. Dalam: Parent RA, editor. Comparative Biology of the Normal Lung (Second Edition) [Internet]. San Diego: Academic Press; 2015 [dikutip 19 Agustus 2024]. hlm. 513–36. Tersedia pada: https://www.sciencedirect.com/science/article/pii/B9780124045774000278.
  35. Islam MS, Saha SC, Sauret E, Gemci T, Gu Y. Pulmonary aerosol transport and deposition analysis in upper 17 generations of the human respiratory tract. Journal of Aerosol Science. 2017;108:29–43. https://doi.org/10.1016/j.jaerosci.2017.03.004
  36. Longhin E, Holme JA, Gutzkow KB, Arlt VM, Kucab JE, Camatini M, dkk. Cell cycle alterations induced by urban PM2.5 in bronchial epithelial cells: characterization of the process and possible mechanisms involved. Part Fibre Toxicol. 19 Desember 2013;10(1):63. https://doi.org/10.1186/1743-8977-10-63
  37. Gholami A, Tajik R, Atif K, Zarei AA, Abbaspour S, Teimori-Boghsani G, dkk. Respiratory Symptoms and Diminished Lung Functions Associated with Occupational Dust Exposure Among Iron Ore Mine Workers in Iran. The Open Respiratory Medicine Journal [Internet]. 11 Februari 2020 [dikutip 19 April 2024];14(1). Tersedia pada: https://openrespiratorymedicinejournal.com/VOLUME/14/PAGE/1/.https://doi.org/10.2174/1874306402014010001
  38. Badima H, Kumie A, Meskele B, Abaya SW. Welding fume exposure and prevalence of chronic respiratory symptoms among welders in micro-and small-scale enterprise in Akaki Kality sub-city, Addis Ababa, Ethiopia: a comparative cross-sectional study. BMC Pulmonary Medicine. 2024;24(1):147. https://doi.org/10.1186/s12890-024-02958-2
  39. Elifanov AV, Kovyazina OL, Lepunova ON, Shalabodov AD. The impact of working conditions on indicators of cardiorespiratory system and blood in electric welders with different lengh of work. Ekologiya cheloveka (Human Ecology). 2018;25(3):27–32. https://doi.org/10.33396/1728-0869-2018-3-27-32

Last update:

No citation recorded.

Last update: 2025-01-21 04:57:15

No citation recorded.