skip to main content

Model Prediksi Kasus DBD Berdasarkan Perubahan Iklim: Cohort Study dengan Data NASA di Kabupaten Bantul

1Program Studi Kesehatan Masyarakat Program Sarjana, Universitas Respati Yogyakarta, Jalan Raya Tajem KM.1,5, Maguwoharjo, Depok, Kenayan, Wedomartani, Kec. Ngemplak, Kabupaten Sleman, Daerah Istimewa Yogyakarta 55282, Indonesia

2Dinas Kesehatan Daerah Istimewa Yogyakarta 4, Jl Gondosuli No. 6, Semaki, Umbulharjo, Kota Yogyakarta, Indonesia

Open Access Copyright 2025 Jurnal Kesehatan Lingkungan Indonesia under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Abstract

Latar belakang: Kasus DBD di Provinsi Daerah Istimewa Yogyakarta masih cenderung tinggi terutama di Kabupaten Bantul dengan Incidance Rate ≥ 49/100.000 penduduk. Peningkatan kasus DBD dipengaruhi oleh perubahan iklim karena iklim menjadi ancaman kesehatan terbesar bagi manusia dan dapat mendukung proses transmisi penularan penyakit oleh vektor. Perubahan iklim dapat menggambarkan pola kejadian kasus DBD masa lampau dan masa kini yang berhubungan dengan variasi suhu, kelembaban relative 2 meter, tekanan udara, dan pengawanan dengan tujuan untuk membuat suatu model prediksi kasus DBD dari variabel perubahan iklim yang paling berpengaruh di Kabupaten Bantul menggunakan data NASA.

Metode: Desain penelitian ini menggunakan cohort retrospektif  dengan data sekunder iklim NASA dan data kasus DBD dari Dinas Kesehatan Provinsi Daerah Istimewa Yogyakara selama 15 tahun (2008-2022). Analisis data dilakukan menggunakan uji normalitas Kolmogorov Smirnof, uji Correlation Pearson, dan uji regresi linier berganda.

Hasil: Hasil penelitian menunjukkaan variasi iklim seperti suhu udara bola kering, suhu bola basah, suhu titik embun, kelembaban relatif 2 meter, dan pengawanan berhubungan terhadap kasus DBD, sedangkan suhu permukaan bumi dan tekanan udara tidak berhubungan dengan kasus DBD di Kabupaten Bantul. Model persamaan regresi liniear yang ditemukan yakni Kasus DBD = -1556,679+(42,357*Suhu Udara Bola Kering)+ (7,521*Kelembaban Relative 2 Meter)+(-1,338*Pengawanan) (R2=21,1%) dengan uji asumsi klasik terpenuhi.

Simpulan: Model prediksi ini dapat digunakan sebagai upaya early warning system  dalam program pencegahan dan pemberantasan kasus DBD.

 

ABSTRACT

Tittle: Prediction Model of DHF Cases Based on Climate Change: Cohort Study with NASA Data in Bantul Regency

Background: DHF cases in Yogyakarta Special Region Province still tend to be high, especially in Bantul Regency with an incidence rate ≥ 49/100,000 population. The increase in DHF cases can be influenced by climate change because climate is the biggest health threat to humans and can support the transmission process of disease transmission by vectors. Climate change can describe the pattern of past and present DHF cases associated with variations in temperature, 2-meter relative humidity, air pressure, and cloudiness to make a prediction model of DHF cases from the most influential climate change variabels in Bantul Regency using NASA data.

Method: This study design used a retrospective cohort with secondary data of NASA climate and DHF case data from the Provincial Health Office of Yogyakara Special Region for 15 years (2008-2022). Data were analyzed using Kolmogorov Smirnof normality test, Pearson Correlation test, and multiple linear regression test.

Result: The results showed that climatic variations such as dry bulb temperature, wet bulb temperature, dew point temperature, 2 meter relative humidity, and cloudiness were related to DHF cases, while land surface temperature and air pressure were not related to DHF cases in Bantul Regency. The linear regression equation model found is DHF cases = -1556.679 + (42.357*Dry Bulb Air Temperature) + (7.521*Relative Humidity 2 Meters) + (-1.338*Cloud Amount) (R2 = 21.1%) with the classical assumption test fulfilled..

Conclusion: This prediction model can be used as an early warning system in the prevention and eradication program of DHF cases.

Note: This article has supplementary file(s).

Fulltext View|Download |  CTA
Copyrigh Transfer Agreement
Subject
Type CTA
  Download (161KB)    Indexing metadata
 ES
Etichal Statement
Subject
Type ES
  Download (215KB)    Indexing metadata
 Turnitin
Turnitin
Subject
Type Turnitin
  Download (2MB)    Indexing metadata
Keywords: DBD; Kabupaten Bantul; Model Prediksi; NASA; Perubahan Iklim

Article Metrics:

  1. World Health Organization (WHO). Dengue and Severe Dengue [Internet]. 2024. Available from: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue
  2. Mondal N. The Resurgence of Dengue Epidemic and Climate Change in India. Departement of Anthropology, Sikkim University, School of Human Sciences, Gangtok 737102, Sikkim, India. 2023;
  3. World Health Organization. Dengue - Global Situation [Internet]. 2023. Available from: https://www.int/emergencies/disease-outbreak-news/iten/2023-DON498
  4. Ikhsan M. Analisis Pola Penyebaran Kasus Demam Berdarah Dengue di Wilayah Kerja Puskesmas Lingkar Barat Kecamatan Gading Cempaka Kota Bengkulu. 2017
  5. Kementerian Kesehatan RI. Profil Kesehatan Indonesia. 2020
  6. Dinas Kesehatan DIY. Waspada Demam Berdarah. 2020
  7. Dinas Kesehatan DIY. Data Penderita dan Kematian DBD Provinsi DIY tahun 2008-2022. 2023
  8. Mentari SAFB, Hartono B. Systematic Review : Faktor Risiko Demam Berdarah di Indonesia Systematic Review : Risk Factors for Dengue Fever in Indonesia. 2023;(26):22–36. https://doi.org/10.29241/jmk.v9i1.1255
  9. Bickton FM. Climate Change as the Biggest threat to Public Health in Southern Africa and Measures to Reduce its Impacts. 2016;28(June):2015–7. https://doi.org/10.4314/mmj.v28i2.9
  10. Siti M. Model Populasi Nyamuk dengan Melibatkan Faktor Kontrol dan Variasi Musim. 2021;1(2):69–73. https://doi.org/10.35472/indojam.v1i2.361
  11. Putri DR. Hubungan Curah Hujan dan Suhu Udara dengan Kejadian Demam Berdarah Dengue di Kabupaten Pesawaran. Digit Library Universitas Lampung [Internet]. 2018;24. Available from: http://digilib.unila.ac.id/
  12. Pascawati NA, Baskoro T, Satoto T, Wibawa T, Frutos R, Maguin S, et al. Dampak Potensial Perubahan Iklim Terhadap Dinamika Penularan Penyakit DBD Di Kota Mataram. 2019;49–60. https://doi.org/10.22435/blb.v15i1.1510
  13. Handayani, P. Hubungan Antara Faktor Iklim dan Kejadian Demamberdarah Dengue (DBD) di Wilayah DKI Jakarta Tahun 2008-2011. Fakultas Kesehatan Masyarakat Departemen Kesehatan Lingkungan Depok. 2012
  14. Saputra YW, & Sandy AT. Pengamatan Fisika Awan. 2021
  15. Nirwana T, Raksanagara A, & Afriandi I. Pengaruh Curah Hujan, Temperatur, dan Kelembaban Terhadap Kejadian Penyakit DBD, ISPA, dan Diare: Suatu Kajian Literatur. 2011:38
  16. Sintorini MM. Pengaruh Iklim terhadap Kasus Demam Berdarah Dengue. Kesmas National Public Health Journal. 2007;2(1):11. https://doi.org/10.21109/kesmas.v2i1.279
  17. Tumey A, Kaunang WPJ, Asrifuddin A, Kesehatan F, Universitas M, Ratulangi S, et al. Hubungan Variabilitas Iklim Dengan Kejadian Demam Berdarah Dengue (DBD) Di Kabupaten Kepulauan Talaud Tahun 2018 - Juni 2020. KESMAS Jurnal Kesehatan Masyarakat Universitas Sam Ratulangi [Internet]. 2020;9(7):16–27. Available from: https://ejournal.unsrat.ac.id/v3/index.php/kesmas/article/view/31607
  18. Dininta GF, Hermawan D, Alfarisi R, Farich A. Hubungan Faktor Iklim Dengan Kasus Dbd Di Kota Bandar Lampung Tahun 2015 – 2019. Ruwa Jurai Jurnal Kesehatan Lingkungan. 2021;15(2):58. https://doi.org/10.26630/rj.v15i2.2790
  19. Sugiyono. Metode Penelitian Kuantitatif, Kualitatif, dan R&D. Bandung: Penerbit Alfabeta; 2019
  20. Ruari W, Yolandia RA, Noviyani EP. Hubungan Pengetahuan, Lama Pemakaian Kontrasepsi, Jenis Kontrasepsi Suntik Terhadap Gangguan Menstruasi pada Akseptor KB Suntik di PMB Setiawati Kotawaringin Timur Tahun 2023. 2024;3(5):2262–75. https://doi.org/10.55681/sentri.v3i5.2727
  21. Dahlan MS. Statistik untuk Kedokteran dan Kesehatan: Deskriptif, Bivariat, dan Multivariat Menggunakan SPSS Seri 1 Edisi 6. Jakarta: Epidemiologi Indonesia; 2014
  22. Fauziyah N. Analisis Data Menggunakan Multiple Linear Regression Test di Bidang Kesehatan Masyarakat dan Klinis. Bandung: Politeknik Kesehatan Kemenkes Bandung; 2020
  23. Hidayati N, Amalia R, Windarso SE. Analisis Spasial Kejadian Demam Berdarah Dengue (DBD) di Kabupaten Bantul Tahun 2022. Jurnal Kesehatan Masyarakat Indonesia. 2023;18(4):27–33
  24. Asih E, Putri VT, Lusida N, Mallongi A, Latifah N, Fajrini F, et al. Analisis Variasi Iklim dengan Kejadian Demam Berdarah Dengue (DBD) di Kota Tangerang Selatan. Jurnal Kedokteran dan Kesehatan [Internet]. 2023;19(1):33–41. Available from: https://jurnal.umj.ac.id/index.php/JKK/article/view/16690.
  25. Stasiun Meteorologi Yogyakarta. Analisis Iklim Yogyakarta [Internet]. 2022. Available from: https://stamet-yogya.bmkg.go.id/
  26. Monaghan AJ, Sampson KM, Steinhoff DF, Ernst KC, Ebi KL, Jones B, et al. The Potential Impacts of 21st Century Climatic and Population Changes on Human Exposure to the Virus Vector Mosquito Aedes Aegypti. Climatic Change. 2018;146(3–4):487–500. https://doi.org/10.1007/s10584-016-1679-0
  27. Laukon MT. Faktor yang Berhubungan dengan Kejadian Demam Berdarah Dengue di Wilayah Kerja Puskemas Air Salobar Kota Ambon Tahun 2023. Nucl Phys. 2023;13(1):104–16
  28. Irma I, Sabilu Y, Harleli H, AF SM. Hubungan Iklim dengan Kejadian Demam Berdarah Dengue (DBD). Jurnal Kesehatan. 2021;12(2):266. https://doi.org/10.26630/jk.v12i2.2234
  29. Nurdin H, Muhammad VIM, Sahdan M, Setyobudi A. Pengaruh Iklim Terhadap Penyakit Berbasis Vektor Nyamuk di Kota Kupang Tahun 2020. 2022;3:1–7. https://doi.org/10.31172/bgb.v3i1.61
  30. Wu X, Lang L, Ma W, Song T, Kang M, He J, et al. Non-Linear Effect of Mean Temperature and Relative Humidity on Dengue Incidence in Guangzhou, China. Science of the Total Environment. 2018;628–629:766–71. https://doi.org/10.1016/j.scitotenv.2018.02.136
  31. Tiro AR, Irianti M, H RCW. Sosialisasi Gerakan Teras Cuaca Nelayan. 2023;6(1):59–64
  32. Maulina S. Musim Pancaroba Menyebabkan Melonjaknya Kasus Demam Berdarah Dengue (DBD) di Rumah Sakit Pusat Angkatan Laut Dr. Ramelan Surabaya [Internet]. 2024. Available from: https://unair.ac.id/
  33. Herdianti. Hubungan Suhu, Kelembaban dan Curah Hujan terhadap Keberadaan Jentik Nyamuk Aedes Aegypti Di RT 45 Kelurahan Kenali Besar. Riset Informasi Kesehatan. 2017;6(1):95–101
  34. Campbell-lendrum D, Manga L, Bagayoko M, Sommerfeld J, Campbell-lendrum D. Climate Change and Vector Borne Diseases : What are the Implications for Public Health Research and Policy. 2015; https://doi.org/10.1098/rstb.2013.0552
  35. Parningotan JW, Program S, Teknika S, Belawan AM. Analisa Pengaruh Udara Pada Ac Split Terhadap Laju Pendingin Pada Ruangan. ATDS SAINTECH-Journal of Engineering. 2022;3(1):109–15
  36. Moratiel R, Soriano B, Centeno A, Spano D, Snyder RL. Wet-bulb, dew point, and air temperature trends in Spain. Theory Applcation Climatology. 2017. https://doi.org/10.1007/s00704-016-1891-x
  37. Harapan H, Michie A, Mudatsir M, Sasmono RT, Imrie A. Epidemiology of dengue hemorrhagic fever in Indonesia: Analysis of five decades data from the National Disease Surveillance. BMC Research Notes [Internet]. 2019;12(1):4–9. Available from: https://doi.org/10.1186/s13104-019-4379-9
  38. Elemo EO, Ogobor EA, Ayantunji BG, Mangete OE, Alagbe GA, Abdulkareem ML, et al. Relationship between Relative Humidity and the Dew Point Temperature in Abuja , Nigeria. 2021;8:1–13. https://doi.org/10.4236/oalib.1108086
  39. National Oceanic and Atmospheric Administration. The Importance of Understanding Clouds [Internet]. 2015. Available from: www. nasa. gov
  40. National Oceanic and Atmospheric Administration. Kelembaban Relatif di Atas Lautan [Internet]. 2014. Available from: https://www.gfdl.noaa.gov/blog_held/47-relative-humidity-over-the-oceans/
  41. Pakaya R, Lazuardi L, Nirwati H. Analisis spasial faktor lingkungan kejadian demam berdarah dengue (DBD) di Limboto Gorontalo. BKM Journal Community Medicine and Public Health. 2019;35(9):315–22
  42. Bone T, Kaunang WPJ, Langi F. Hubungan antara Curah Hujan, Suhu Udara dan Kelembaban dengan Kejadian Demam Berdarah Dengue di Kota Manado Tahun 2015-2020. Kesmas [Internet]. 2021;10(5):36–45. Available from: https://ejournal.unsrat.ac.id/index.php/kesmas/article/view/35109
  43. Ritawati R, Supranelfy Y. Hubungan Kejadian Demam Berdarah Dengue Dengan Iklim Di Kota Prabumulih Tahun 2014-2017. Jurnal Bahana Kesehatan Masyarakat (Bahana Journal Public Health. 2019;3(1):43–50. https://doi.org/10.35910/jbkm.v3i1.194
  44. Haufe WO. The Effects of Atmospheric Pressure on the Plight Responses of Aëdes aegypti (L.). Bulletin of Entomological Research. 1954;45. https://doi.org/10.1017/S000748530002959X
  45. Arumugam M. Formula for Converting mmHg to kPa as the Unit for Measurement of Pressure when using Newer Tourniquet Machines that Measure Pressure using the SI (Systeme International). Journal of Orthopaedic Nursing. 2009;13(4):201–3. https://doi.org/10.1016/j.joon.2009.04.002
  46. Chen Y, Zhao Z, Li Z, Li W, Li Z, Guo R, et al. Spatiotemporal transmission patterns and determinants of dengue fever: A case study of Guangzhou, China. International Journal Environmenttal Research Public Health. 2019;16(14). https://doi.org/10.3390/ijerph16142486
  47. BMKG. Potensi Pertumbuhan Awan CB [Internet]. 2024. Available from: https://web-aviation.bmkg.go.id/web/prediksi_cb.php
  48. Kholiviana PA, Ruhiat Y, Saefullah A. Analisis Vertical Wind Shear Pada Pertumbuhan Awan Cumulonimbus Di Wilayah Kabupaten Tangerang. Newton-Maxwell Journal of Physics,. 2022;3(1):17–23. https://doi.org/10.33369/nmj.v3i1.21080
  49. Nasa Science. Steamy Relationship : How Atmospheric Water Vapor Amplifies Earth’s Greenhouse Effect [Internet]. 2022. Available from: https://science.nasa.gov
  50. Fitriana BR. Hubungan Faktor Suhu Dengan Kasus Demam Berdarah Dengue (Dbd) Di Kecamatan Sawahan Surabaya. Indonesia Journal Public Health. 2019;13(1):85. https://doi.org/10.20473/ijph.v13i1.2018.85-97
  51. Hidayat MR. Hubungan Karakteristik Kontainer dan Perilaku Masyarakat dengan Keberadaan Jentik Nyamuk Aedes sp di Kelurahan Payo SelincH [Internet]. Vol. 7, Science. 2022. 1–8 p
  52. Liu Z, Zhang Q, Li L, He J, Guo J, Wang Z, et al. The Effect of Temperature on Dengue Virus Transmission by Aedes Mosquitoes. 2023;(September):1–10. https://doi.org/10.3389/fcimb.2023.1242173
  53. Augusto P, Valadares R. Relationship Between Air Temperature and Dengue Incidence : Time Series Study in Minas Gerais , Brazil ( 2010-2019 ). Cadernos De Saude Publica. 2024;40(3)
  54. Nugraha F, Haryanto B, Wulandari RA, Pakasi TT. Studi Ekologi Hubungan Kejadian Demam Berdarah Dengue (DBD) dengan Faktor Iklim di Kota Administrasi Jakarta Pusat, Indonesia Tahun 1999-2018. Jurnal Ilmu Kesehatan Masyarakat. 2021;142–8. https://doi.org/10.33221/jikm.v10i03.923
  55. Drakou K, Nikolaou T, Vasquez M, Petric D, Michaelakis A, Kapranas A, et al. The E ff ect of Weather Variables on Mosquito Activity : A Snapshot of the Main Point of Entry of Cyprus. International Journal Environtal Research Public Health. 2020; https://doi.org/10.3390/ijerph17041403
  56. Karim N, Munshi SU, Anwar N, Alam S. Climatic Factors Influencing Dengue Cases in Dhaka City : a Model for Dengue Prediction. 2012;(July):32–9
  57. Meteorologi Office. Cumulonimbus Clouds [Internet]. 2020. Available from: https://www.metoffice.gov.uk
  58. NASA. Cumulonimbus Cloud Over Africa [Internet]. 2010. Available from: https://www.nasa.gov
  59. Aisyah S. Awan dan Angin dalam Prespektif Al-Qur’an dan Sains. 2022;(2021):1–3
  60. Sumampouw OJ. Epidemiologi Demam Berdarah Dengue di Kabupaten Minahasa Sulawesi Utara. Sam Ratulangi Journal Public Health. 2020;1(1):001. https://doi.org/10.35801/srjoph.v1i1.27272
  61. Tayal A, Kumar S, Rakesh K. Management of Dengue : An Updated Review. 2023;90(February):168–77. https://doi.org/10.1007/s12098-022-04394-8
  62. WHO. Enhancing Dengue Diagnosis and Case Management [Internet]. 2024. Available from: htps.//www.who.int/activities/enhancing-dengue-diagnosis-and-case-management/

Last update:

No citation recorded.

Last update: 2025-01-19 22:20:41

No citation recorded.