skip to main content

Pollution Level of the Downstream Area of Paguyaman River, Gorontalo, Indonesia: A Study Based on the Microalgae Distribution and Saprobic Index

1Aquatic Resources Management Department, Faculty of Marine and Fisheries Technology, Universitas Negeri Gorontalo, Gorontalo, Indonesia

2Marine Science Department, Faculty of Marine and Fisheries Technology, Universitas Negeri Gorontalo, Gorontalo, Indonesia

Open Access Copyright 2025 Jurnal Kesehatan Lingkungan Indonesia under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Abstract

Judul : Level Kualitas Perairan Bagian Hilir Sungai Paguyaman, Gorontalo, Indonesia: Suatu Kajian Berdasarkan Distribusi Mikroalga dan Indeks Saprobik

Latar Belakang: Sungai Paguyaman membentang sepanjang 136,25 km dan merupakan daerah aliran sungai terbesar kedua di Provinsi Gorontalo. Bagian hilir sungai ini bermuara di Teluk Tomini dan berada di perbatasan antara Desa Girisa Kecamatan Paguyaman Kabupaten Boalemo dan Desa Bilato Kecamatan Boliyohuto Kabupaten Gorontalo. Bagian hilir sungai ini menjadi sumber penghidupan bagi masyarakat di sekitarnya, namun kualitas perairannya terancam akibat pencemaran organik yang berasal dari aktivitas domestik dan pertanian.  Tujuan dari penelitian ini adalah untuk mengidentifikasi jenis dan distribusi mikroalga, dan menilai kualitas perairan menggunakan indeks saprobik di wilayah hilir Sungai Paguyaman, Gorontalo.

Metode: Pengambilan sampel dilakukan pada empat stasiun dengan masing-masing tiga ulangan, dimulai dari stasiun 1 tepat di bibir muara sungai, kemudian disusul stasiun 2 hingga 4 dengan jarak antar stasiun 3-4 km. Mikroalga yang diamati mencakup mikroalga planktonik (fitoplankton) dan mikroalga yang melekat pada substrat batu (perifiton). Sementara parameter fisik perairan mencakup kedalaman air, suhu, kecepatan arus, kecerahan, dan substrat dasar, serta parameter kimia perairan mencakup pH, oksigen terlarut (DO), dan salinitas.

Hasil: Hasil penelitian menunjukkan bahwa mikroalga yang ditemukan di wilayah hilir Sungai Paguyaman berasal dari 10 kelas yang terdiri dari 101 spesies dan 45 genus. Komposisi terbanyak berasal dari kelas Bacillariophyceae.

Simpulan: Berdasarkan nilai indeks keanekaragaman (H'), indeks dominansi dan indeks keseragaman mikroalga, perairan secara umum berada dalam kategori komunitas stabil dengan keberadaan atau kepadatan biota yang merata. Nilai indeks saprobik (SI) 1,64 dan nilai indeks keadaan trofik (TSI) 0,65 menunjukkan bahwa tingkat saprobitas wilayah hilir Sungai Paguyaman saat ini berada pada tingkat Oligo/b-mesosaprobik yaitu termasuk pada kategori tercemar ringan. Temuan ini mengindikasikan bahwa perairan di hilir sungai mengalami penurunan kualitas yang dapat berdampak pada kesehatan ekosistem dan masyarakat.

 

ABSTRACT

Background: Paguyaman River stretches for 136.25 km and represents the second largest drainage basin in Gorontalo Province. Its downstream area of the river empties into Tomini Bay and is located on the border between Girisa Village, Paguyaman Subdistrict, Boalemo Regency, and Bilato Village, Boliyohuto Subdistrict, Gorontalo Regency. This regions constitutes a vital source of livelihood for the local community. However, organic pollution from domestic and agricultural activities threatens the quality of its waters. The objective of this study is to identify the types and distribution of microalgae and assess water quality using saprobic index in the downstream area of Paguyaman River, Gorontalo.

Method: Sampling was conducted at four stations with three replications per station. The sampling began at station 1, located at the river mouth, and continued to stations 2 through 4, with a distance of 3-4 km between stations. Microalgae observed included planktonic microalgae (phytoplankton) and microalgae attached to rock substrates (periphyton). The physical parameters included water depth, temperature, current velocity, brightness, and bottom substrate, while the chemical parameters included pH, dissolved oxygen (DO), and salinity.

Result: The findings revealed that microalgae in the downstream area of the Paguyaman River came from 10 classes of 101 species and 45 genera. The most significant composition comes from the Bacillariophyceae class.

Conclusion: According to the diversity index (H'), dominance index, and uniformity index of microalgae, the waters are generally classified as stable communities, characterized by the presence or density of biota that are evenly distributed. The Saprobic Index (SI) value of 1.64 and the Trophic Status Index (TSI) value of 0.65 indicate that the saprobity level of the downstream area of the Paguyaman River is currently at the Oligo/b-mesosaprobic level, which is included in the lightly polluted category. This finding indicates that the river downstream is experiencing degrading, potentially affecting the health of the ecosystem and the surround community.

Note: This article has supplementary file(s).

Fulltext View|Download |  ES
Etichal Statement
Subject
Type ES
  Download (329KB)    Indexing metadata
 CTA
Copyrigh Transfer Agreement
Subject
Type CTA
  Download (396KB)    Indexing metadata
 Turnitin
Turnitin
Subject
Type Turnitin
  Download (2MB)    Indexing metadata
Keywords: Dominance index; Diversity index; Periphyton; Phytoplankton; Uniformity index

Article Metrics:

  1. Snow GC. Determining the health of river-dominated estuaries using microalgal biomass and community composition. South Africal Journal of Botany 2016;107:21–30. https://doi.org/10.1016/j.sajb.2016.02.201
  2. Al-Harbi SM. Epiphytic microalgal dynamics and species composition on brown seaweeds (Phaeophyceae) on the Northern Coast of Jeddah, Saudi Arabia. Journal Oceanography and Marine Research 2017;5(153): 1-9. https://doi.org/10.4172/2572-3103.1000153
  3. Wu N, Dong X, Liu Y, Wang C, Baattrup-Pedersen A, Riis T. Using river microalgae as indicators for freshwater biomonitoring: Review of published research and future directions. Ecological Indicators 2017; 81:124-131. https://doi.org/10.1016/j.ecolind.2017.05.066
  4. Arsad A, Putra KT, Latifah N, Kadim MK, Musa M. Epiphytic microalgae community as aquatic bioindicator in Brantas River, East Java, Indonesia. Biodiversitas 2021;22(7):2961-2971. https://doi.org/10.13057/biodiv/d220749
  5. Mahmudi M, Arsad S, Musa M, Lusiana ED, Buwono NR, Indahwati AD, Irmawati, Sukmaputri NA, Prasasti AL, Larasati AP, Sharfina AAS, Aldhiya PR, Mutiara R, Putri SG. Marine microalgae Assemblages of the East Java Coast Based on Sub-Habitats Representatives and their Relationship
  6. to the Environmental Factors. Journal of Ecological Engineering 2023;24(12):268-281. https://doi.org/10.12911/22998993/173580
  7. Zongo B, Boussim, J. The effects of physicochemical variables and tadpole assemblages on microalgal communities in freshwater temporary ponds through an experimental approach. Aquatic Biosystems 2015; 11(1):1-14. https://doi.org/10.1186/s12999-014-0013-4
  8. Gogoi P, Sinha A, Sarkar SD, Chanu TN, Yadav AK, Koushlesh SK, Borah S, Das BK. Das SK. Seasonal influence of physicochemical parameters on phytoplankton diversity and assemblage pattern in Kailash Khal, a tropical wetland, Sundarbans, India. Applied Water Science 2019;9(156):1-13. https://doi.org/10.1007/s13201-019-1034-5
  9. Wu NC, Schmalz B, Fohrer N. Development and testing of a phytoplankton index of biotic integrity (P-IBI) for a German lowland river. Ecological Indicators 2012;13(1):158-167. https://doi.org/10.1016/j.ecolind.2011.05.022
  10. Wang X, Zheng B, Liu L, Li L. Use of diatoms in river health assessment. Annual Research and Review in Biology 2014;4(24):4054-4074. https://doi.org/10.9734/ARRB/2014/11963
  11. Lange K, Townsend CR, Matthaei CD. A trait-based framework for stream algal communities. Ecology and Evolution 2016;6(1):23-36. https://doi.org/10.1002/ece3.1822
  12. Ashour M, Elshobary ME, El-Shenody R, Kamil AW, Abomohra AEF. Evaluation of a native oleaginous marine microalga Nannochloropsis oceanica for dual use in biodiesel production and aquaculture feed. Biomass and Bioenergy 2019;120:439-447. https://doi.org/10.1016/j.biombioe.2018.12.009
  13. Prazukin A, Shadrin N, Balycheva D, Firsov Y, Lee R, Anufriieva E. Cladophora spp. (Chlorophyta) modulate environment and create a habitat for microalgae in hypersaline waters. European Journal of Phycology 2020;2020:1-13. https://doi.org/10.1080/09670262.2020.1814423
  14. Zhao Y, Li J, Qi Y, Guan X, Zhao C, Wang H, Zhu S, Fu G, Zhu J, He H. Distribution, sources, and ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the tidal creek water of coastal tidal flats in the Yellow River Delta, China. Marine Pollution Bulletin 2021;173:113110. https://doi.org/10.1016/j.marpolbul.2021.113110
  15. Deng M, Liu HT, Ouyang Z. Characteristics and driving factors of coastal rural domestic waste of the Yellow River Delta in China. Journal of Cleaner Production 2022;353:131670. https://doi.org/10.1016/j.jclepro.2022.131670
  16. Ogbonna KE, Ogbonna JC, Njoku OU, Yamada K, Suzuki I. Effect of organic carbon sources on growth lipid production and fatty acid profile in mixotrophic culture of Scenedesmus dimorphus (Turpin) Kützing. The Microbe 2024;3:100064. https://doi.org/10.1016/j.microb.2024.100064
  17. Lahili R, Lihawa F, Dunggio I. Performance of Paguyaman Watershed management based on physical and chemical conditions of water. Gorontalo Journal of Forestry Research 2023;6(2):100-110. [in Indonesian]. https://doi.org/10.32662/gjfr.v6i2.2505
  18. Emilia I, Suheryanto S, Hanifah Z. Distribution of Cadmium metal in water and sediment in the Musi River, Palembang City. Jurnal Penelitian Sains 2013;16(2):59-64. [in Indonesian] https://ejurnal.mipa.unsri.ac.id/index.php/jps/article/view/73
  19. Anh NT, Can LD, Nhan NT, Schmalz B, Luu TL. Influences of key factors on river water quality in urban and rural areas: A review. Case Studies in Chemical and Environmental Engineering 2023;8:100424. https://doi.org/10.1016/j.cscee.2023.100424
  20. Awaludin AS, Dewi NK, Ngabekti S. Plankton saprobic coefficient in Semarang State University Embung Waters. Jurnal MIPA 2015;38(2):115-120. [in Indonesian]
  21. Abadi YP, Suharto B, Rahadi JB. Water quality analysis of Klinter River discharge liquid waste of paper industry, based on biology (plankton). Jurnal Sumberdaya Alam dan Lingkungan 2014;1(3):36-42. [in Indonesian] https://jsal.ub.ac.id/index.php/jsal/article/view/141
  22. Pratiwi NTM, Hariyadi S, Kiswari DI. Periphyton community structure at upstream Cisadane River, Halimun Salak Mountain National Park, West Java. Jurnal Biologi Indonesia 2017;13(2):289-296. [in Indonesian] https://doi.org/10.47349/jbi/13022017/289
  23. Davis CC. The marine and freshwater plankton. Michigan (US): Michigan State University Press; 1995
  24. Prescott GW. How to know the freshwater algae. Montana (US): Wm. C. Brown Company Publishers; 1970
  25. Magurran AE. Ecology diversity and its measurement. New Jersey: Princeton University Press; 1988. https://doi.org/10.1007/978-94-015-7358-0
  26. Odum EP. Basics of ecology. Yogyakarta: Gadjah Mada University Press; 1993
  27. Arinardi OH, Trimaningsih SH, Asnaryanti E. Abundance range and composition of predominant plankton in Central Indonesian Waters. Jakarta: Pusat Penelitian dan Pengembangan Oseanologi-LIPI; 1996. [in Indonesian]
  28. Dresscher TGN, van der Mark H. A simplified method for the biological assessment of the quality of fresh and slightly brackish water. Hydrobiologia 1976;48(3):199-201. https://doi.org/10.1007/BF00028691
  29. Siregar ZA, Anggoro S, Irianto HE, Purnaweni H. A saprobic index for quality of minapadi water and the fish osmotic performance level of minapadi. E3S Web of Conferences 2023;448(03062):1-9. https://doi.org/10.1051/e3sconf/202344803062
  30. Acevedo-Trejos E, Brandt G, Bruggeman J, Merico A. Mechanism shaping structure and functional diversity of phytoplankton communities in the ocean. Scientific Reports 2015;5(8958):1-8. https://doi.org/10.1038/srep08918
  31. Barangé M, Campos B. Models of species abundance: a critique of and an alternative to the dynamics model. Marine Ecology Progress Series1991;69(3):293-298. https://doi.org/10.3354/meps069293
  32. Asra R, Utami TS, Adriadi A. Diversity and abundance of perifiton on plan vegetation in Bento Swampas a water quality bioindicator. Biospecies 2022;15(2):1-10. [in Indonesian] https://doi.org/10.22437/biospecies.v15i2.14924
  33. Baek SH, Lee M, Park BS, Lim, YK. Variation in phytoplankton community due to an autumn typhoon and winter water turbulance in Southern Korean coastal waters. Sustainability 2020;12(7):2781. https://doi.org/10.3390/su12072781
  34. Tambaru R, Burhanuddin AI, Massinal A, Amran MA. Detection of marine microalgae (phytoplankton) quality to support seafood health: a case study on the west coast of South Sulawesi, Indonesia. Biodiversitas 2021; 22(11):5179-5186. https://doi.org/10.13057/biodiv/d221156
  35. Zakiyah U, Mulyanto M. Biodiversity and microalgae distribution based on geographical information system (GIS) at Southern Water of Malang District, East Java. DEPIK, Jurnal Ilmu-ilmu Perairan, Pesisir dan Perikanan 2020;9(3):478-483. [in Indonesian] https://doi.org/10.13170/depik.9.3.17772
  36. Christiani, Insan AI, Widyartini DS. Abundance and biofuel potential of microphytobenthos from Pekacangan River waters affected by tapioca wastewater effluent. Biosfera 2015;32(3):169-175. [in Indonesian] https://journal.bio.unsoed.ac.id/index.php/biosfera/article/view/340
  37. Harmoko H, Lokaria E, Misra S. Exploration of microalgae in Watervang Waterfall of Lubuklinggau City. Bioedukasi: Jurnal Pendidikan Biologi 2017;8(1):75-82. [in Indonesian] https://doi.org/10.24127/bioedukasi.v8i1.840
  38. Salamah S, Mentari D, Ariska D, Ahadi R. Plankton abundance in the waters of Nipah Beach, Gampong Rabo Pulo Aceh, Aceh Besar District. Prosiding Seminar Nasional Biotik 2018;418-424. [in Indonesian]
  39. Aryani M, Fitriani L, Harmoko, Sepriyaningsih. Microalgae of bacillariophyta division found in Kasie River, Lubuklinggau Barat I Subdistrict, Lubuklinggau City. Florea: Jurnal Biologi dan Pembelajarannya 2020;7(1):48-53. [in Indonesian] https://doi.org/10.25273/florea.v7i1.5206
  40. Kumaji SS, Katili AS, Lalu P. Identification of epilithic microalgae as environmental biomonitoring in Bulango River, Gorontalo Province. Jambura Edu Biosfer Journal 2019;1(1):15-22. [in Indonesian] https://doi.org/10.34312/jebj.v1i1.2042
  41. Abudi MK, Ahmad NF, Pasisingi N, Kadim MK. Performance of phytoplankton species in Gorontalo Bay. Jurnal Kelautan 2021;14(3):273-277. [in Indonesian] https://doi.org/10.21107/jk.v14i3.9516
  42. Kono S, Tiopo AK, Pasisingi N, Kadim MK. Abundance and ecological index of periphyton in Bone River Bone Bolango Regency Gorontalo. Jurnal Sumberdaya Akuatik Indopasifik 2021;5(3):235-243. [in Indonesian] https://doi.org/10.46252/jsai-fpik-unipa.2021.Vol.5.No.3.137
  43. Kadim MK, Pasisingi N, Kasim F. Spatial and temporal distribution phytoplankton in the Gorontalo Bay, Indonesia. AACL Bioflux 2018;11(3):833-845. https://bioflux.com.ro/docs/2018.833-845.pdf
  44. Iswanto CY, Hutabarat S, Purnomo PW. Water fertility analysis based on plankton biodiveristy, nitrate and phospate in Jali River and Lereng River Keburuhan Village, Purworejo. Diponegoro Journal of Maquares 2015;4(3):84-90. [in Indonesian]
  45. Pirzan AM, Pong-Masak PR. Relationship between productivity of brackishwater pond and diversity of phytoplankton. Jurnal Riset Akuakultur 2007;2(2):211-220. [in Indonesian] https://ejournal-balitbang.kkp.go.id/index.php/jra/article/view/2275
  46. Akmal Y, Humairani R, Muliari, Hanum, Zulfahmi I. Phytoplankton community as bioindicators in aquaculture media tilapia (Oreochromis niloticus) exposed to detergent and pesticide waste. Akuatikisle: Jurnal Akuakultur, Pesisir dan Pulau-pulau Kecil 2021;5(1):7-14. [in Indonesian] https://doi.org/10.29239/j.akuatikisle.5.1.7-14
  47. Tarigas MT, Apriansyah, Safitri I. The community structure of epiphytic microalgae associated with Sargassum sp. on the waters of the Sepempang Village Natuna Regency. Jurnal Laut Khatulistiwa 2020;3(2):61-68. [in Indonesian] https://doi.org/10.26418/lkuntan.v3i2.37932
  48. Handayani D. Plankton abundance and diversity in tidal waters of Blanakan pond, Subang. Undergraduate Thesis. Jakarta: Jurusan Biologi, Uin Syarif Hidayatullah; 2009. [in Indonesian]
  49. Nybakken JW. Marine Biology: An Ecological Approach. Jakarta: PT Gramedia Pustaka Utama; 1988. [in Indonesian]
  50. Hartanto BY. The diversity of phytoplankton and relation with water parameters in physics and chemistry in the Cengklik Reservoir Boyolali. Undergraduate Thesis. Yogyakarta: Fakultas Keguruan dan Ilmu Pendidikan, Universitas Sanata Dharma; 2015. [in Indonesian]
  51. Umiatun S, Carmudi, Christiani. The Relationship between silica content and the abundance of benthic diatoms along the Pelus River, Banyumas Regency. Scripta Biologica 2017;4(1):61-67. [in Indonesian] https://doi.org/10.20884/1.sb.2017.4.1.387
  52. Romimohtarto K, Juwana S. Marine Meroplankton: Larvae of Marine Animals that Become Plankton. Jakarta: Djambatan; 2004. [in Indonesian]
  53. Agustin AD, Solichin A, Rahman A. Analysis of watre’s trophic state based on periphyton’s abundance and types in Jabungan River, Banyumanik, Semarang. Journal of Maquares 2019;8(3):185-192. [in Indonesian] https://doi.org/10.14710/marj.v8i3.24254
  54. Al Marwazi M, Lestari N, Japa L. Water quality of freshwater fish farming ponds at Batu Kumbung Fish Seed Center West Lombok using algae bioindicators. Universitas Mataram: Prosiding Seminar Nasional Pendidikan Biologi;2018. [in Indonesian]
  55. Kadim MK, Pasisingi N. Physical habitat conditions and macroinvertebrate diversity as indicators of pollution in the Bone River, Gorontalo. Jurnal Kesehatan Lingkungan Indonesia 2024;23(3):301-310. [in Indonesian] https://doi.org/10.14710/jkli.23.3.301-310

Last update:

No citation recorded.

Last update: 2025-05-29 04:02:41

No citation recorded.