Universitas Diponegoro, Indonesia
BibTex Citation Data :
@article{JMASIF10134, author = {Amalia Yanti and Sukmawati Endah}, title = {Aplikasi Deteksi Dini Gangguan Sistem Pernafasan Menggunakan Metode Learning Vector Quantization (LVQ) Berbasis Web}, journal = {Jurnal Masyarakat Informatika}, volume = {7}, number = {1}, year = {2017}, keywords = {Aplikasi deteksi dini gangguan sistem pernafasan, Jaringan syaraf tiruan (JST), Learning vector quantization (LVQ),K-Fold Cross Validation}, abstract = { Gangguan sistem pernafasan merupakan gangguan yang menjadi masalah besar di dunia khususnya di Indonesia. Banyaknya jumlah penderita yang ada di Indonesia tiap tahunnya terus bertambah. Salah satu penyebabnya adalah kurangnya kesadaran masyarakat akan gejala yang dialami sehingga menyebabkan keterlambaatan dalam pengobatan dan susah untuk disembuhkan. Melihat kondisi tersebut, perlu adanya cara untuk mendeteksi dini adanya gangguan sistem pernafasan melalui gejala yang dialami, sehingga dari gejala tersebut dapat dilakukan sebuah klasifikasi jenis gangguan sistem pernafasan yang dialami. Learning vector quantization (LVQ) adalah metode dalam jaringan syaraf tiruan (JST) yang paling banyak digunakan untuk proses klasifikasi sehingga sangat cocok untuk kasus tersebut. Penelitian ini menghasilkan aplikasi deteksi dini gangguan sistem pernafasan yang dapat mengklasifikasikan gangguan sistem pernafasan apa yang dialami pengguna dengan input berupa data gejala yang dialami. Data yang digunakan pada penelitian ini sebanyak 80 data, 72 data digunakan untuk pelatihan, dan 8 data untuk pengujian. Pengujian dilakukan dengan menggunakan K-Fold Cross Validation dengan nilai k = 10. Aplikasi ini menggunakan pilihan arsitektur jaringan terbaik berdasarkan hasil pengujian, yaitu dengan inisialisasi bobot awal dari dataset yang diambil secara random, learning rate (α) 0.01, error minimum (eps) 0.01 dan maksimum epoch sebanyak 100 epoch dengan tingkat akurasi sebesar 80%. }, issn = {2777-0648}, pages = {55--65} doi = {10.14710/jmasif.7.1.10134}, url = {https://ejournal.undip.ac.id/index.php/jmasif/article/view/10134} }
Refworks Citation Data :
Article Metrics:
Last update:
Last update: 2024-11-14 22:24:44
The authors who submit the manuscript must understand that the article's copyright belongs to the author(s) if accepted for publication. However, the author(s) grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Authors should also understand that their article (and any additional files, including data sets, and analysis/computation data) will become publicly available once published under that license. See our copyright policy. By submitting the manuscript to Jmasif, the author(s) agree with this policy. No special document approval is required.
The author(s) guarantee that:
The author(s) retain all rights to the published work, such as (but not limited to) the following rights:
Suppose the article was prepared jointly by more than one author. Each author submitting the manuscript warrants that all co-authors have given their permission to agree to copyright and license notices (agreements) on their behalf and notify co-authors of the terms of this policy. Jmasif will not be held responsible for anything arising because of the writer's internal dispute. Jmasif will only communicate with correspondence authors.
Authors should also understand that their articles (and any additional files, including data sets and analysis/computation data) will become publicly available once published. The license of published articles (and additional data) will be governed by a Creative Commons Attribution-ShareAlike 4.0 International License. Jmasif allows users to copy, distribute, display and perform work under license. Users need to attribute the author(s) and Jmasif to distribute works in journals and other publication media. Unless otherwise stated, the author(s) is a public entity as soon as the article is published.