Departemen Ilmu Komputer/Informatika, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
BibTex Citation Data :
@article{JMASIF42354, author = {Fithra Hayati Syahrul and Priyo Sidik Sasongko}, title = {Penerapan Convolutional Neural Network Untuk Klasifikasi Tingkat Keparahan Retinopati Diabetik Pada Penderita Diabetes Melitus}, journal = {Jurnal Masyarakat Informatika}, volume = {13}, number = {1}, year = {2022}, keywords = {Retina; Retinopati diabetik; Convolutional Neural Network}, abstract = { Retinopati Diabetik adalah penyakit yang dapat menganggu pembuluh darah retina yang menjadi penyebab kebutaan bagi penderita Diabetes Melitus. Jika penyakit ini terlambat ditangani maka penderita dapat mengalami kebutaan. Perawatan dan pemeriksaan yang tepat dapat membantu mencegah meningkatnya keparahan Retinopati Diabetik. Pemeriksaan secara manual oleh dokter mata dalam mendiagnosis penyakit ini membutuhkan waktu yang relatif lama, sehingga diperlukan sistem untuk mengklasifikasikan tingkat keparahan Retinopati Diabetik. Sistem yang dirancang pada penelitian ini menggunakan metode Convolutional Neural Netwok untuk klasifikasi tingkat keparahan Retinopati Diabetik. Tingkat keparahan Retinopati Diabetik dibagi menjadi 5 kelas yaitu NO DR, Mild, Moderate, Severe, dan Proliferative DR. Penelitian Penerapan Convolutional Neural Netwok untuk Klasifikasi Tingkat Keparahan Retinopati Diabetik pada Penderita Diabetes Melitus menggunakan citra berukuran 64 x 64 x 3 dengan channel RGB. Tahap pra-pengolahan citra yang dilakukan adalah pengubahan ukuran citra. Arsitektur CNN yang digunakan terdiri dari 5 blok dimana masing-masing blok berisi batch normalization layer, convolution layer, max pooling layer menggunakan parameter learning rate 0.0005. Hasil evaluasi model 652 data uji menunjukkan akurasi terbaik sebesar 91.10%. }, issn = {2777-0648}, pages = {1--14} doi = {10.14710/jmasif.13.1.42354}, url = {https://ejournal.undip.ac.id/index.php/jmasif/article/view/42354} }
Refworks Citation Data :
Retinopati Diabetik adalah penyakit yang dapat menganggu pembuluh darah retina yang menjadi penyebab kebutaan bagi penderita Diabetes Melitus. Jika penyakit ini terlambat ditangani maka penderita dapat mengalami kebutaan. Perawatan dan pemeriksaan yang tepat dapat membantu mencegah meningkatnya keparahan Retinopati Diabetik. Pemeriksaan secara manual oleh dokter mata dalam mendiagnosis penyakit ini membutuhkan waktu yang relatif lama, sehingga diperlukan sistem untuk mengklasifikasikan tingkat keparahan Retinopati Diabetik. Sistem yang dirancang pada penelitian ini menggunakan metode Convolutional Neural Netwok untuk klasifikasi tingkat keparahan Retinopati Diabetik. Tingkat keparahan Retinopati Diabetik dibagi menjadi 5 kelas yaitu NO DR, Mild, Moderate, Severe, dan Proliferative DR. Penelitian Penerapan Convolutional Neural Netwok untuk Klasifikasi Tingkat Keparahan Retinopati Diabetik pada Penderita Diabetes Melitus menggunakan citra berukuran 64 x 64 x 3 dengan channel RGB. Tahap pra-pengolahan citra yang dilakukan adalah pengubahan ukuran citra. Arsitektur CNN yang digunakan terdiri dari 5 blok dimana masing-masing blok berisi batch normalization layer, convolution layer, max pooling layer menggunakan parameter learning rate 0.0005. Hasil evaluasi model 652 data uji menunjukkan akurasi terbaik sebesar 91.10%.
Article Metrics:
Last update:
Last update: 2024-11-21 10:05:02
The authors who submit the manuscript must understand that the article's copyright belongs to the author(s) if accepted for publication. However, the author(s) grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Authors should also understand that their article (and any additional files, including data sets, and analysis/computation data) will become publicly available once published under that license. See our copyright policy. By submitting the manuscript to Jmasif, the author(s) agree with this policy. No special document approval is required.
The author(s) guarantee that:
The author(s) retain all rights to the published work, such as (but not limited to) the following rights:
Suppose the article was prepared jointly by more than one author. Each author submitting the manuscript warrants that all co-authors have given their permission to agree to copyright and license notices (agreements) on their behalf and notify co-authors of the terms of this policy. Jmasif will not be held responsible for anything arising because of the writer's internal dispute. Jmasif will only communicate with correspondence authors.
Authors should also understand that their articles (and any additional files, including data sets and analysis/computation data) will become publicly available once published. The license of published articles (and additional data) will be governed by a Creative Commons Attribution-ShareAlike 4.0 International License. Jmasif allows users to copy, distribute, display and perform work under license. Users need to attribute the author(s) and Jmasif to distribute works in journals and other publication media. Unless otherwise stated, the author(s) is a public entity as soon as the article is published.