skip to main content

Penerapan Kecerdasan Buatan Dan Teknologi Informasi Pada Efisiensi Manajemen Pengetahuan

Departemen Sistem Informasi, Fakultas Sains dan Teknologi, Universitas Islam Negeri Syarif Hidayatullah Jakarta, Jl. Ir H. Juanda No.95, Cemp. Putih, Kec. Ciputat Tim, Kota Tangerang Selatan, Indonesia

Received: 1 Jan 2022; Revised: 9 May 2022; Accepted: 9 May 2022; Available online: 27 May 2022; Published: 27 May 2022.
Editor(s): Prajanto Adi
Open Access Copyright (c) 2022 JURNAL MASYARAKAT INFORMATIKA
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Manajemen pengetahuan telah dipelajari dan dibahas sejak lama oleh beberapa peneliti dari akademisi dan sektor bisnis karena vitalitasnya untuk keberhasilan perusahaan. Selain itu, banyak perusahaan terkemuka di seluruh dunia telah mengadopsi beberapa praktik manajemen pengetahuan untuk memastikan bahwa mereka tetap unggul dari pesaing mereka di dunia bisnis yang kompetitif. Oleh karena itu, perusahaan terus mencari cara untuk meningkatkan praktik manajemen pengetahuan. Penelitian ini menggunakan metode literature review terhadap 12 jurnal. Tujuan penelitian ini untuk memiliki pemahaman yang lebih mendalam tentang tren penelitian terbaru dari proses manajemen pengetahuan dan praktik terbaiknya di perusahaan. Namun, subjek ini membutuhkan penyelidikan lebih lanjut dari perspektif lain. Dari hasil penelitian ini tehnik AI yang paling sering di gunakan adalah metode Artificial Neural Network dimana negara yang meneliti subjek terbanyak yaitu Arab Saudi dan UK, dengan studi manajemen pengetahuan yang terkait dengan AI  meningkat dalam tiga tahun terakhir dari 2016 hingga 2019. Penelitian ini secara sistematis menerapkan praktik manajemen pengetahuan saat ini yang mengandalkan mekanisme TI dan AI dan dampaknya terhadap perusahaan beserta tantangan dan keterbatasannya.

Fulltext View|Download
Keywords: knowledge management; information technology; artificial intelligence; business

Article Metrics:

  1. Salloum, S.A., Al-Emran, M., Shaalan, K.: The Impact of knowledge sharing on information systems: a review. In: International Conference on Knowledge Management in Organizations, pp. 94–106 (2018)
  2. Santoro, G., Vrontis, D., Thrassou, A., Dezi, L.: The Internet of Things: Building a knowledge management system for open innovation and knowledge management capacity. Technol. Forecast. Soc. Change 136, 347–354 (2018)
  3. Al-Emran, M., Mezhuyev, V., Kamaludin, A., Shaalan, K.: The impact of knowledge management processes on information systems: a systematic review. Int. J. Inf. Manage. 43, 173–187(2018)
  4. Al-Emran, M., Mezhuyev, V., Kamaludin, A.: Towards a conceptual model for examining the impact of knowledge management factors on mobile learning acceptance. Technol. Soc. (2020)
  5. Al-Emran, M., Mezhuyev, V., Kamaludin, A.: An innovative approach of applying knowledge management in m-learning application development: a pilot study. Int. J. Inf. Commun. Technol. Educ. 15(4), 94–112 (2019)
  6. Al-Emran, M., Mezhuyev, V.: Examining the effect of knowledge management factors on mobile learning adoption through the use of importance-performance map analysis (IPMA). In: International Conference on Advanced Intelligent Systems and Informatics, pp. 449–458 (2019)
  7. Al-Emran, M., Teo, T.: Do knowledge acquisition and knowledge sharing really affect elearning adoption? An empirical study. Educ. Inf. Technol. (2019)
  8. Al-Emran, M., Mezhuyev, V., Kamaludin, A., AlSinani, A.: Development of M-learning application based on knowledge management processes. In: 2018 7th International conference on Software and Computer Applications (ICSCA 2018), pp. 248–253 (2018)
  9. Al-Emran, M., Mezhuyev, V., Kamaludin, A.: Students’ perceptions towards the integration of knowledge management processes in M-learning systems: a preliminary study. Int. J. Eng. Educ. 34(2), 371–380 (2018)
  10. Geisler, E., Wickramasinghe, N.: Principles of Knowledge Management: Theory, Practice, and Cases: Theory, Practice, and Cases. Routledge (2015)
  11. Santoro, G., Vrontis, D., Thrassou, A., Dezi, L.: The Internet of Things: Building a knowledge management system for open innovation and knowledge management capacity. Technol. Forecast. Soc. Change 136, 347–354 (2018)
  12. Jimenez-Jimenez, D., Martínez-Costa, M., Sanchez Rodriguez, C.: The mediating role of supply chain collaboration on the relationship between information technology and innovation. J. Knowl. Manag. 23(3), 548–567 (2019)
  13. Wang, H., Xu, Z., Fujita, H., Liu, S.: Towards felicitous decision making: an overview on challenges and trends of big data. Inf. Sci. (Ny) 367, 747–765 (2016)
  14. Lig˛eza, A., Potempa, T.: Artificial intelligence for knowledge management with bpmn and rules. In: IFIP International Workshop on Artificial Intelligence for Knowledge Management, pp. 19–37 (2012)
  15. Ordóñez de Pablos, P., Lytras, M.: Knowledge Management, Innovation and Big Data: Implications for Sustainability Policy Making and Competitiveness. Multidisciplinary Digital Publishing Institute (2018),
  16. P., Heisig, P., Caldwell, N.H.M., Maier, A. M., Ipsen, C.: Future research on information technology in knowledge management. Knowl. Process Manag. (2019)
  17. Antunes, H. D. J. G., & Pinheiro, P. G. (2019). Linking knowledge management, organizational learning and memory. Journal of Innovation & Knowledge, 5(2), 140-149
  18. Saberi, M., Azadeh, A. Saberi, Z., Pazhoheshfar, P.: A knowledge management system based on artificial intelligence (AI) methods: a flexible fuzzy regression-analysis of variance algorithm for natural gas consumption estimation. In: 2012 International Conference on Information Retrieval & Knowledge Management, pp. 143–147 (2012)
  19. Tan, L.P., Wong, K.Y.: A neural network approach for predicting manufacturing performance using knowledge management metrics. Cybern. Syst. 48(4), 348–364 (2017)
  20. L., Guzman, G., Busch, P.: Artificial intelligence and knowledge management: questioning the tacit dimension. Prometheus 35(1), 37–56 (2017)
  21. Aljaaf, A.J., Al-Jumeily, D., Hussain, A.J., Fergus, P., Al-Jumaily, M., Abdel-Aziz, K.: Toward an optimal use of artificial intelligence techniques within a clinical decision support system. Sci Inf Conf (SAI) 2015, 548–554 (2015)
  22. Shahid, N., Rappon, T., Berta, W.: Applications of artificial neural networks in health care organizational decision-making: a scoping review. PLoS ONE 14(2), e0212356 (2019)

Last update:

  1. Identifikasi Tujuan Tata Kelola Teknologi Informasi PLT FST UIN Jakarta Menggunakan Framework COBIT 2019

    Nur Aeni Hidayah, Nurbojatmiko, Mizan Ade Arfani, Yuliwanda Anggi Kusumaatuti. Journal of Applied Computer Science and Technology, 5 (1), 2024. doi: 10.52158/jacost.v5i1.770

Last update: 2024-11-21 10:46:57

No citation recorded.