Universitas Dian Nuswantoro, Indonesia
BibTex Citation Data :
@article{JMASIF47983, author = {Ramadhan Sani and Yunita Pratiwi and Sri Winarno and Erika Udayanti and Farrikh Alzami}, title = {Analisis Perbandingan Algoritma Naive Bayes Classifier dan Support Vector Machine untuk Klasifikasi Berita Hoax pada Berita Online Indonesia}, journal = {Jurnal Masyarakat Informatika}, volume = {13}, number = {2}, year = {2022}, keywords = {Naïve Bayes Classifier; Support Vector Machine; Klasifikasi Berita Hoax; Berita Hoax; TF-IDF}, abstract = { Masyarakat mampu mengkonsumsi tiap informasi yang tersebar di internet dengan cepat dan terkadang informasi yang beredar tidak selalu memberikan kebenaran yang sesuai dengan kenyataannya (hoax). Demi mendapatkan keuntungan dan mencapai tujuan pribadi, hoax seringkali sengaja dibuat dan dibagikan. Informasi yang didapatkan dari hoax tentunya dapat mempengaruhi masyarakat karena menimbulkan keraguan dan kebingungan terhadap informasi yang diterima Oleh karena itu, penelitian ini membahas tentang bagaimana mengklasifikasikan berita hoax berbahasa Indonesia mengenai isu kesehatan menggunakan TF-IDF serta algoritma Naïve Bayes Classifier dan Support Vector Machine dengan 4 model yang berbeda sehingga mampu memprediksi sebuah berita hoax atau valid. Pada penelitian ini dataset yang dikumpulkan sebanyak 287 diantaranya 200 valid dan 87 hoax. Hasil evaluasi model penelitian ini dengan menggunakan 4 model berbeda pada masing-masing algoritma, diperoleh nilai classification report terbesar untuk algoritma NBC pada model Complement Naïve Bayes dengan hasil precision 95.4%, recall 95.4%, f1-score 95.4% dan accuracy 93.1%. Sedangkan nilai classification report terbesar untuk algoritma SVM pada kernel Sigmoid dengan hasil precision 95.6%, recall 100%, f1-score 97.7% dan accuracy 96.5%. Sehingga dapat disimpulkan bahwa hasil performa rata-rata dari algoritma SVM memiliki kinerja yang lebih baik jika dibandingkan dengan algoritma NBC dalam melakukan klasifikasi berita hoax mengenai isu kesehatan. }, issn = {2777-0648}, pages = {85--98} doi = {10.14710/jmasif.13.2.47983}, url = {https://ejournal.undip.ac.id/index.php/jmasif/article/view/47983} }
Refworks Citation Data :
Article Metrics:
Last update:
Development and Comparison of Multiple Emotion Classification Models in Indonesia Text Using Machine Learning
Sentiment Analysis to Assess Customer Retention on Instagram Social Media Using Naïve Bayes Classifier and Support Vector Machine
Classification of Hoax News Using Machine Learning and Neural Networks with BERT Embeddings
Last update: 2024-09-18 21:37:46
The authors who submit the manuscript must understand that the article's copyright belongs to the author(s) if accepted for publication. However, the author(s) grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Authors should also understand that their article (and any additional files, including data sets, and analysis/computation data) will become publicly available once published under that license. See our copyright policy. By submitting the manuscript to Jmasif, the author(s) agree with this policy. No special document approval is required.
The author(s) guarantee that:
The author(s) retain all rights to the published work, such as (but not limited to) the following rights:
Suppose the article was prepared jointly by more than one author. Each author submitting the manuscript warrants that all co-authors have given their permission to agree to copyright and license notices (agreements) on their behalf and notify co-authors of the terms of this policy. Jmasif will not be held responsible for anything arising because of the writer's internal dispute. Jmasif will only communicate with correspondence authors.
Authors should also understand that their articles (and any additional files, including data sets and analysis/computation data) will become publicly available once published. The license of published articles (and additional data) will be governed by a Creative Commons Attribution-ShareAlike 4.0 International License. Jmasif allows users to copy, distribute, display and perform work under license. Users need to attribute the author(s) and Jmasif to distribute works in journals and other publication media. Unless otherwise stated, the author(s) is a public entity as soon as the article is published.