1Departemen Informatika, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
2Universitas Diponegoro, Indonesia
BibTex Citation Data :
@article{JMASIF49721, author = {Jonathan Sibarani and Dheo Sirait and Salma Ramadhanti}, title = {Intrusion Detection Systems pada Bot-IoT Dataset Menggunakan Algoritma Machine Learning}, journal = {Jurnal Masyarakat Informatika}, volume = {14}, number = {1}, year = {2023}, keywords = {K-Nearest Neighbor; Random Forest; Gaussian Naive Bayes; Intrusion Detection System; Machine Learning; Cybersecurity}, abstract = { Semakin berkembangnya dunia teknologi, semakin banyak juga penggunaan internet dalam kehidupan sehari hari. Pertumbuhan dalam penggunaan internet tersebut menimbulkan kekhawatiran tentang keamanan saat menggunakan layanan internet. Untuk menjamin keamanan pengguna, dapat menggunakan Intrusion Detection System (IDS). Intrusion Detection System merupakan sebuah sistem yang akan mengawasi aktivitas dalam jaringan komputer dengan menggunakan berbagai macam metode seperti machine learning. Dalam jurnal penelitian ini, digunakan tiga macam algoritma machine learning untuk membantu IDS dalam mengenali serangan. Algoritma machine learning yang digunakan adalah K-Nearest Neighbor, Random Forest, dan Gaussian Naïve Bayes. Untuk membantu penelitian juga digunakan BoT-IoT Dataset yang dibuat oleh UNSW Canberra dengan lebih dari 72.000.000 baris data . Penelitian ini dilakukan dengan tujuan untuk menentukan algoritma yang paling sesuai dalam melakukan deteksi intrusi dengan dataset BoT-IoT. }, issn = {2777-0648}, pages = {38--52} doi = {10.14710/jmasif.14.1.49721}, url = {https://ejournal.undip.ac.id/index.php/jmasif/article/view/49721} }
Refworks Citation Data :
Article Metrics:
Last update:
Last update: 2025-01-15 04:34:38
The authors who submit the manuscript must understand that the article's copyright belongs to the author(s) if accepted for publication. However, the author(s) grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Authors should also understand that their article (and any additional files, including data sets, and analysis/computation data) will become publicly available once published under that license. See our copyright policy. By submitting the manuscript to Jmasif, the author(s) agree with this policy. No special document approval is required.
The author(s) guarantee that:
The author(s) retain all rights to the published work, such as (but not limited to) the following rights:
Suppose the article was prepared jointly by more than one author. Each author submitting the manuscript warrants that all co-authors have given their permission to agree to copyright and license notices (agreements) on their behalf and notify co-authors of the terms of this policy. Jmasif will not be held responsible for anything arising because of the writer's internal dispute. Jmasif will only communicate with correspondence authors.
Authors should also understand that their articles (and any additional files, including data sets and analysis/computation data) will become publicly available once published. The license of published articles (and additional data) will be governed by a Creative Commons Attribution-ShareAlike 4.0 International License. Jmasif allows users to copy, distribute, display and perform work under license. Users need to attribute the author(s) and Jmasif to distribute works in journals and other publication media. Unless otherwise stated, the author(s) is a public entity as soon as the article is published.