School of Electrical Engineering and Informatics , Indonesia
BibTex Citation Data :
@article{JMASIF73127, author = {Husni Fadhilah and Nugraha Utama}, title = {Systematic Literature Review on Medical Image Captioning Using CNN-LSTM and Transformer-Based Models}, journal = {Jurnal Masyarakat Informatika}, volume = {16}, number = {1}, year = {2025}, keywords = {Medical image captioning, convolutional neural network, transformer, healthcare ai, automatic report generation}, abstract = {Creating descriptive text from medical images to aid in diagnosis and treatment planning is known as medical image captioning, and it is a crucial duty in the healthcare industry. In this study, medical image captioning techniques are systematically reviewed in the literature with an emphasis on Transformer-based models and Convolutional Neural Network-Long Short Term Memory (CNN-LSTM). Aspects like as model designs, datasets, evaluation measures, and difficulties encountered in practical implementations are all examined in this paper. According to the results, Transformer-based models, specifically Swin Transformer and Vision Transformer (ViT), perform better than CNN-LSTM-based models in terms of BLEU, ROUGE, CIDEr, and METEOR scores, resulting in more accurate clinically relevant caption generation. However, there are still a number of issues, including interpretability, computing requirements, and data restrictions. Potential future routes to increase the efficacy and practical application of medical image captioning systems are covered in this paper, including hybrid model approaches, data augmentation techniques, and enhanced explainability methodologies.}, issn = {2777-0648}, pages = {32--53} doi = {10.14710/jmasif.16.1.73127}, url = {https://ejournal.undip.ac.id/index.php/jmasif/article/view/73127} }
Refworks Citation Data :
Article Metrics:
Last update:
Last update: 2025-05-30 05:26:34
The authors who submit the manuscript must understand that the article's copyright belongs to the author(s) if accepted for publication. However, the author(s) grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Authors should also understand that their article (and any additional files, including data sets, and analysis/computation data) will become publicly available once published under that license. See our copyright policy. By submitting the manuscript to Jmasif, the author(s) agree with this policy. No special document approval is required.
The author(s) guarantee that:
The author(s) retain all rights to the published work, such as (but not limited to) the following rights:
Suppose the article was prepared jointly by more than one author. Each author submitting the manuscript warrants that all co-authors have given their permission to agree to copyright and license notices (agreements) on their behalf and notify co-authors of the terms of this policy. Jmasif will not be held responsible for anything arising because of the writer's internal dispute. Jmasif will only communicate with correspondence authors.
Authors should also understand that their articles (and any additional files, including data sets and analysis/computation data) will become publicly available once published. The license of published articles (and additional data) will be governed by a Creative Commons Attribution-ShareAlike 4.0 International License. Jmasif allows users to copy, distribute, display and perform work under license. Users need to attribute the author(s) and Jmasif to distribute works in journals and other publication media. Unless otherwise stated, the author(s) is a public entity as soon as the article is published.