skip to main content

Artificial Intelligence-Aided In Silico Screening of Syzygium polyanthum Phytochemicals for Antidiabetic Drug Discovery Using ACO (Ant Colony Optimization) Algorithm

1Universitas Wahid Hasyim, Indonesia

2Research Center for Pharmaceutical Ingredient and Traditional Medicine, National Research and Innovation Agency (BRIN), Indonesia

3Department of Materials Science and Engineering, Chonnam National University, South Korea

4 Universitas Islam Sultan Agung, Indonesia

View all affiliations
Received: 23 May 2025; Revised: 8 Jul 2025; Accepted: 14 Jul 2025; Published: 15 Jul 2025.
Open Access Copyright (c) 2025 The authors. Published by Department of Informatics Universitas, Diponegoro
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

This research employs an artificial intelligence (AI)-driven molecular docking approach to identify potential antidiabetic compounds from Syzygium polyanthum phytochemicals targeting the α-glucosidase enzyme. The docking simulations were conducted using the PLANTS software, which utilizes an ant colony optimization (ACO) algorithm, a nature-inspired AI technique that mimics the foraging behavior of ants to explore ligand binding conformations efficiently. PLANTS integrates multiple empirical scoring functions, including ChemPLP, to evaluate protein-ligand interactions by modeling steric complementarity, hydrogen bonding, and torsional potentials, enabling accurate prediction of binding affinities. The protein structure with PDB code 2JKE was validated with a root-mean-square deviation (RMSD) of 0.2912 Å, confirming the reliability of the docking protocol. Screening results revealed seven phytochemical compounds Hexadecanoic acid 2-hydroxy-1-(hydroxymethyl), Methyl oleate, Methyl palmitate, Phytol, 9,12,15-Octadecatrien-1-ol, Nerolidol, and Eicosane exhibited lower docking scores (-96.2919 to -80.5188) than both the reference drug miglitol (-80.2642) and the native ligand (-77.2910), indicating stronger and more stable binding to the α-glucosidase active site. These findings suggest that the identified compounds have superior theoretical inhibitory potential compared to miglitol, a clinically used α-glucosidase inhibitor. The AI-based in silico screening using PLANTS thus provides a powerful, cost-effective strategy for accelerating antidiabetic drug discovery by prioritizing promising natural compounds for further experimental validation.

Fulltext
Keywords: Artificial Intelligence, PLANTS software, Syzygium polyanthum, Antidiabetic Drug

Article Metrics:

  1. Y. Wu et al., “The role of artificial intelligence in drug screening, drug design, and clinical trials,” Front. Pharmacol., vol. 15, no. November, pp. 1–12, 2024, doi: 10.3389/fphar.2024.1459954
  2. A. Blanco-González et al., “The Role of AI in Drug Discovery: Challenges, Opportunities, and Strategies,” Pharmaceuticals, vol. 16, no. 6, pp. 1–11, 2023, doi: 10.3390/ph16060891
  3. K. Zhang et al., “Artificial intelligence in drug development,” Nat. Med., vol. 31, no. 1, pp. 45–59, 2025, doi: 10.1038/s41591-024-03434-4
  4. L. K. Vora, A. D. Gholap, K. Jetha, R. R. Thakur, H. K. Solanki, and V. P. Chavda, “Artificial Intelligence in Pharmaceutical Technology and Drug Delivery Design,” Pharmaceutics, vol. 15, no. 7. 2023, doi: 10.3390/pharmaceutics15071916
  5. A. I. Visan and I. Negut, “Integrating Artificial Intelligence for Drug Discovery in the Context of Revolutionizing Drug Delivery.,” Life (Basel, Switzerland), vol. 14, no. 2, Feb. 2024, doi: 10.3390/life14020233
  6. P. C. Agu et al., “Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management,” Sci. Rep., vol. 13, no. 1, p. 13398, 2023, doi: 10.1038/s41598-023-40160-2
  7. A. V Sadybekov and V. Katritch, “Computational approaches streamlining drug discovery,” Nature, vol. 616, no. 7958, pp. 673–685, 2023, doi: 10.1038/s41586-023-05905-z
  8. N. Alotaiq and D. Dermawan, “Evaluation of Structure Prediction and Molecular Docking Tools for Therapeutic Peptides in Clinical Use and Trials Targeting Coronary Artery Disease,” International Journal of Molecular Sciences, vol. 26, no. 2. 2025, doi: 10.3390/ijms26020462
  9. T. I. Adelusi et al., “Molecular modeling in drug discovery,” Informatics Med. Unlocked, vol. 29, p. 100880, 2022, doi: https://doi.org/10.1016/j.imu.2022.100880
  10. V. Temml and Z. Kutil, “Structure-based molecular modeling in SAR analysis and lead optimization,” Comput. Struct. Biotechnol. J., vol. 19, pp. 1431–1444, 2021, doi: https://doi.org/10.1016/j.csbj.2021.02.018
  11. C. Gorgulla, S. S. Çınaroğlu, P. D. Fischer, K. Fackeldey, G. Wagner, and H. Arthanari, “VirtualFlow Ants—Ultra-Large Virtual Screenings with Artificial Intelligence Driven Docking Algorithm Based on Ant Colony Optimization,” International Journal of Molecular Sciences, vol. 22, no. 11. 2021, doi: 10.3390/ijms22115807
  12. M. Ahmad, M. F. Khan, M. Mursal, and S. Hussain, “Navigating the Computational Seas: A Comprehensive Overview of Molecular Docking Software in Drug Discovery,” Č. Podlipnik, Ed. Rijeka: IntechOpen, 2024
  13. T. Chen, X. Shu, H. Zhou, F. A. Beckford, and M. Misir, “Algorithm selection for protein–ligand docking: strategies and analysis on ACE,” Sci. Rep., vol. 13, no. 1, p. 8219, 2023, doi: 10.1038/s41598-023-35132-5
  14. L. V Nguyen, “Swarm Intelligence-Based Multi-Robotics: A Comprehensive Review,” AppliedMath, vol. 4, no. 4. pp. 1192–1210, 2024, doi: 10.3390/appliedmath4040064
  15. L. Abualigah, “Particle Swarm Optimization: Advances, Applications, and Experimental Insights,” Comput. Mater. Contin., vol. 82, no. 2, pp. 1539–1592, 2025, doi: https://doi.org/10.32604/cmc.2025.060765
  16. A. J. Scheen, “Sulphonylureas in the management of type 2 diabetes: To be or not to be?,” Diabetes Epidemiol. Manag., vol. 1, p. 100002, 2021, doi: https://doi.org/10.1016/j.deman.2021.100002
  17. R. Bhavya and L. Elango, “Ant-Inspired Metaheuristic Algorithms for Combinatorial Optimization Problems in Water Resources Management,” Water, vol. 15, no. 9. 2023, doi: 10.3390/w15091712
  18. B. Salehi et al., “Antidiabetic Potential of Medicinal Plants and Their Active Components.,” Biomolecules, vol. 9, no. 10, Sep. 2019, doi: 10.3390/biom9100551
  19. N. Chaachouay and L. Zidane, “Plant-Derived Natural Products: A Source for Drug Discovery and Development,” Drugs and Drug Candidates, vol. 3, no. 1. pp. 184–207, 2024, doi: 10.3390/ddc3010011
  20. O. O. Olaokun and M. S. Zubair, “Antidiabetic Activity, Molecular Docking, and ADMET Properties of Compounds Isolated from Bioactive Ethyl Acetate Fraction of Ficus lutea Leaf Extract,” Molecules, vol. 28, no. 23. 2023, doi: 10.3390/molecules28237717
  21. V. O. Ukwenya, S. A. Adelakun, and O. O. Elekofehinti, “Exploring the antidiabetic potential of compounds isolated from Anacardium occidentale using computational aproach: ligand-based virtual screening.,” silico Pharmacol., vol. 9, no. 1, p. 25, 2021, doi: 10.1007/s40203-021-00084-z
  22. R. Qing, S. Hao, E. Smorodina, D. Jin, A. Zalevsky, and S. Zhang, “Protein Design: From the Aspect of Water Solubility and Stability.,” Chem. Rev., vol. 122, no. 18, pp. 14085–14179, Sep. 2022, doi: 10.1021/acs.chemrev.1c00757
  23. I. M. Kamal and S. Chakrabarti, “MetaDOCK: A Combinatorial Molecular Docking Approach,” ACS Omega, vol. 8, no. 6, pp. 5850–5860, Feb. 2023, doi: 10.1021/acsomega.2c07619
  24. N. S. Pagadala, K. Syed, and J. Tuszynski, “Software for molecular docking: a review,” Biophys. Rev., vol. 9, no. 2, pp. 91–102, 2017, doi: 10.1007/s12551-016-0247-1
  25. S. C, D. K. S, V. Ragunathan, P. Tiwari, S. A, and B. D. P, “Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease.,” J. Biomol. Struct. Dyn., vol. 40, no. 2, pp. 585–611, Feb. 2022, doi: 10.1080/07391102.2020.1815584
  26. Lalu Sanik Wahyu Fadil Amrulloh, Nuraini Harmastuti, Andri Prasetiyo, and Rina Herowati, “Analysis of Molecular Docking and Dynamics Simulation of Mahogany (Swietenia macrophylla King) Compounds Against the PLpro Enzyme SARS-COV-2,” J. Farm. Dan Ilmu Kefarmasian Indones., vol. 10, no. 3, pp. 347–359, 2023, doi: 10.20473/jfiki.v10i32023.347-359
  27. L. H. Tan, C. K. Kwoh, and Y. Mu, “RmsdXNA: RMSD prediction of nucleic acid-ligand docking poses using machine-learning method,” Brief. Bioinform., vol. 25, no. 3, p. bbae166, May 2024, doi: 10.1093/bib/bbae166
  28. U. Baroroh, S.Si., M.Biotek., Z. S. Muscifa, W. Destiarani, F. G. Rohmatullah, and M. Yusuf, “Molecular interaction analysis and visualization of protein-ligand docking using Biovia Discovery Studio Visualizer,” Indones. J. Comput. Biol., vol. 2, no. 1, p. 22, 2023, doi: 10.24198/ijcb.v2i1.46322
  29. X.-Y. Meng, H.-X. Zhang, M. Mezei, and M. Cui, “Molecular docking: a powerful approach for structure-based drug discovery.,” Curr. Comput. Aided. Drug Des., vol. 7, no. 2, pp. 146–157, Jun. 2011, doi: 10.2174/157340911795677602
  30. S. Li, Y. Wei, X. Liu, H. Zhu, and Z. Yu, “A New Fast Ant Colony Optimization Algorithm: The Saltatory Evolution Ant Colony Optimization Algorithm,” Mathematics, vol. 10, no. 6. 2022, doi: 10.3390/math10060925
  31. B. J. Bender et al., “A practical guide to large-scale docking,” Nat. Protoc., vol. 16, no. 10, pp. 4799–4832, 2021, doi: 10.1038/s41596-021-00597-z
  32. S. Vittorio et al., “Addressing docking pose selection with structure-based deep learning: Recent advances, challenges and opportunities,” Comput. Struct. Biotechnol. J., vol. 23, pp. 2141–2151, 2024, doi: https://doi.org/10.1016/j.csbj.2024.05.024
  33. C. Yaiprasert and A. N. Hidayanto, “AI-powered in the digital age: Ensemble innovation personalizes the food recommendations,” J. Open Innov. Technol. Mark. Complex., vol. 10, no. 2, p. 100261, 2024, doi: https://doi.org/10.1016/j.joitmc.2024.100261
  34. T. Siebenmorgen et al., “MISATO: machine learning dataset of protein–ligand complexes for structure-based drug discovery,” Nat. Comput. Sci., vol. 4, no. 5, pp. 367–378, 2024, doi: 10.1038/s43588-024-00627-2
  35. A. Castro-Alvarez, A. M. Costa, and J. Vilarrasa, “The Performance of Several Docking Programs at Reproducing Protein–Macrolide-Like Crystal Structures,” Molecules, vol. 22, no. 1. 2017, doi: 10.3390/molecules22010136
  36. R. S. Mulyati, Budi; Panjaitan, “Studi Penambatan Molekul Flavanoid Pada Reseptor α-glucosidase menggunakan PLANTS,” J. Kim. Mulawarman, vol. 18, no. 2, pp. 68–76, 2021, doi: DOI: https://doi.org/10.30872/jkm.v18i2.1004.
  37. K. Crampon, A. Giorkallos, M. Deldossi, S. Baud, and L. A. Steffenel, “Machine-learning methods for ligand–protein molecular docking,” Drug Discov. Today, vol. 27, no. 1, pp. 151–164, 2022, doi: https://doi.org/10.1016/j.drudis.2021.09.007
  38. E. O. Adedeji et al., “Molecular docking and molecular dynamics simulation studies of inhibitor candidates against Anopheles gambiae 3-hydroxykynurenine transaminase and implications on vector control,” Heliyon, vol. 11, no. 1, p. e41633, 2025, doi: https://doi.org/10.1016/j.heliyon.2025.e41633
  39. F. Amini, K. I. Abbas, and J. B. Ghasemi, “Molecular modeling approach in design of new scaffold of α-glucosidase inhibitor as antidiabetic drug.,” Biochem. Biophys. reports, vol. 42, p. 101995, Jun. 2025, doi: 10.1016/j.bbrep.2025.101995
  40. A. Clyde et al., “AI-accelerated protein-ligand docking for SARS-CoV-2 is 100-fold faster with no significant change in detection.,” Sci. Rep., vol. 13, no. 1, p. 2105, Feb. 2023, doi: 10.1038/s41598-023-28785-9
  41. B. Wang et al., “Elucidating the role of artificial intelligence in drug development from the perspective of drug-target interactions,” J. Pharm. Anal., vol. 15, no. 3, p. 101144, 2025, doi: https://doi.org/10.1016/j.jpha.2024.101144

Last update:

No citation recorded.

Last update: 2025-07-15 09:55:04

No citation recorded.