skip to main content

Regionprops Segmentation in Convolutional Neural Network for Identification of Lung Cancer Disease and Position

1Universitas Dian Nuswantoro, Indonesia

2Universiti Teknikal Malaysia Melaka, Malaysia

Received: 2 Jun 2025; Revised: 15 Jul 2025; Accepted: 22 Jul 2025; Published: 24 Jul 2025.
Open Access Copyright (c) 2025 The authors. Published by Department of Informatics Universitas, Diponegoro
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
Lung cancer is one of the leading causes of death in the world, so early detection is very important to increase the chances of patient recovery. This study aims to develop a method for identifying lung cancer types using Convolutional Neural Network (CNN) combined with Regionprops segmentation technique to determine the position of cancer in CT scan images. The dataset used consists of 1,294 CT scan images classified into three classes, namely Benign, Malignant, and Normal, with variations in the ratio of training and testing data: 80:20, 70:30, 60:40, 50:50, and 40:60. The CNN method is used to perform classification, while the Regionprops segmentation technique is applied to determine the position of the cancer. The results showed that the model with a data ratio of 80:20 achieved the highest accuracy of 99.54%, indicating a very good generalization ability of the model. The Regionprops segmentation technique successfully separated the nodule area in the CT scan image clearly, thus providing more detailed information regarding the position of the cancer. The conclusion of this study shows that the combination of CNN and Regionprops segmentation methods is effective in detecting and analyzing lung cancer and has the potential to be used as a diagnostic tool in the medical field. This study recommends further testing with a larger dataset and optimization of model parameters to improve classification and segmentation performance.
Keywords: Lung Cancer; Convolutional Neural Network (CNN); CT Scan; Regionprops Segmentation; Cancer Identification; Deep Learnin;

Article Metrics:

  1. E. R. Swenson, “The pathway for carbon dioxide: from tissues to lungs,” in On Oxygen, Elsevier, 2025, pp. 211–228. doi: 10.1016/B978-0-443-21877-4.00008-5
  2. S. Jana, P. Manjari, and I. Hyder, “Physiology of Respiration,” in Textbook of Veterinary Physiology, Singapore: Springer Nature Singapore, 2023, pp. 171–192. doi: 10.1007/978-981-19-9410-4_7
  3. R. Hasweh et al., “Radiological Differences in COVID-19 Related Lung Manifestations Between Smokers and Non-smokers: A Single-Center Retrospective Study in Jordan,” Cureus, May 2023, doi: 10.7759/cureus.38437
  4. R. Seleka, M. Petersen, and K. S. Mpolokeng, “Morphological variations of fissures, lobes, and hilar pattern of the lung in a select South African sample,” Surgical and Radiologic Anatomy, vol. 46, no. 12, pp. 2005–2017, Oct. 2024, doi: 10.1007/s00276-024-03497-5
  5. R. Maki et al., “Pulmonary vessels and bronchus anatomy of the left upper lobe,” Surg Today, vol. 52, no. 4, pp. 550–558, Apr. 2022, doi: 10.1007/s00595-022-02471-1
  6. I. P. Kamila, C. A. Sari, E. H. Rachmawanto, and N. R. D. Cahyo, “A Good Evaluation Based on Confusion Matrix for Lung Diseases Classification using Convolutional Neural Networks,” Advance Sustainable Science, Engineering and Technology, vol. 6, no. 1, p. 0240102, Dec. 2023, doi: 10.26877/asset.v6i1.17330
  7. G. K. Bhatti, P. Pahwa, A. Gupta, U. Navik, and J. S. Bhatti, “Therapeutic Strategies Targeting Signaling Pathways in Lung Cancer,” in Targeting Cellular Signalling Pathways in Lung Diseases, Singapore: Springer Singapore, 2021, pp. 217–239. doi: 10.1007/978-981-33-6827-9_9
  8. A. Thurlapati et al., “Do the 2013 United States Preventive Services Task Force guidelines for lung cancer screening fail high-risk African American smokers? An institutional retrospective observational cohort study,” European Journal of Cancer Prevention, vol. 30, no. 5, pp. 375–381, Sep. 2021, doi: 10.1097/CEJ.0000000000000652
  9. S. Punitha, T. Stephan, R. Kannan, M. Mahmud, M. S. Kaiser, and S. B. Belhaouari, “Detecting COVID-19 From Lung Computed Tomography Images: A Swarm Optimized Artificial Neural Network Approach,” IEEE Access, vol. 11, pp. 12378–12393, 2023, doi: 10.1109/ACCESS.2023.3236812
  10. A. Zotin, Y. Hamad, K. Simonov, and M. Kurako, “Lung boundary detection for chest X-ray images classification based on GLCM and probabilistic neural networks,” in Procedia Computer Science, Elsevier B.V., 2019, pp. 1439–1448. doi: 10.1016/j.procs.2019.09.314
  11. M. K. Islam, M. M. Rahman, M. S. Ali, S. M. Mahim, and M. S. Miah, “Enhancing lung abnormalities detection and classification using a Deep Convolutional Neural Network and GRU with explainable AI: A promising approach for accurate diagnosis,” Machine Learning with Applications, vol. 14, p. 100492, Dec. 2023, doi: 10.1016/j.mlwa.2023.100492
  12. N. R. D. Cahyo and M. M. I. Al-Ghiffary, “An Image Processing Study: Image Enhancement, Image Segmentation, and Image Classification using Milkfish Freshness Images,” IJECAR) International Journal of Engineering Computing Advanced Research, vol. 1, no. 1, pp. 11–22, 2024
  13. F. Farhan, C. A. Sari, E. H. Rachmawanto, and N. R. D. Cahyo, “Mangrove Tree Species Classification Based on Leaf, Stem, and Seed Characteristics Using Convolutional Neural Networks with K-Folds Cross Validation Optimalization,” Advance Sustainable Science Engineering and Technology, vol. 5, no. 3, p. 02303011, Oct. 2023, doi: 10.26877/asset.v5i3.17188
  14. M. M. I. Al-Ghiffary, N. R. D. Cahyo, E. H. Rachmawanto, C. Irawan, and N. Hendriyanto, “Adaptive deep learning based on FaceNet convolutional neural network for facial expression recognition,” Journal of Soft Computing, vol. 05, no. 03, pp. 271–280, 2024, doi: https://doi.org/10.52465/joscex.v5i3.450
  15. N. R. D. Cahyo, C. A. Sari, E. H. Rachmawanto, C. Jatmoko, R. R. A. Al-Jawry, and M. A. Alkhafaji, “A Comparison of Multi Class Support Vector Machine vs Deep Convolutional Neural Network for Brain Tumor Classification,” in 2023 International Seminar on Application for Technology of Information and Communication (iSemantic), IEEE, Sep. 2023, pp. 358–363. doi: 10.1109/iSemantic59612.2023.10295336
  16. H. F. Al-Yasriy, M. S. AL-Husieny, F. Y. Mohsen, E. A. Khalil, and Z. S. Hassan, “Diagnosis of Lung Cancer Based on CT Scans Using CNN,” IOP Conf Ser Mater Sci Eng, vol. 928, no. 2, p. 022035, Nov. 2020, doi: 10.1088/1757-899X/928/2/022035
  17. A. Y. Saleh, C. K. Chin, V. Penshie, and H. R. H. Al-Absi, “Lung cancer medical images classification using hybrid CNN-SVM,” International Journal of Advances in Intelligent Informatics, vol. 7, no. 2, p. 151, Jul. 2021, doi: 10.26555/ijain.v7i2.317
  18. F. A. Hermawati, “Sistem Deteksi Keganasan Kanker Paru-Paru pada CT Scan dengan Menggunakan Metode Mask Region-based Convolutional Neural Network (Mask R-CNN),” 2020. [Online]. Available: https://www.researchgate.net/publication/355680874
  19. A. Al-Baset, R. Saabia, R. Majeed Azawi, and R. A. Kadhim, “Classification of lung cancer histology using CT images based on convolutional neural network-CNN,” Int. J. Nonlinear Anal. Appl, vol. 13, pp. 2008–6822, 2022, doi: 10.22075/ijnaa.2022.6847
  20. Z. UrRehman et al., “Effective lung nodule detection using deep CNN with dual attention mechanisms,” Sci Rep, vol. 14, no. 1, p. 3934, Feb. 2024, doi: 10.1038/s41598-024-51833-x
  21. S. Bin Hulayyil, S. Li, and L. Xu, “Machine-Learning-Based Vulnerability Detection and Classification in Internet of Things Device Security,” Electronics (Basel), vol. 12, no. 18, p. 3927, Sep. 2023, doi: 10.3390/electronics12183927
  22. A. Mozo, A. Karamchandani, L. de la Cal, S. Gómez-Canaval, A. Pastor, and L. Gifre, “A Machine-Learning-Based Cyberattack Detector for a Cloud-Based SDN Controller,” Applied Sciences (Switzerland), vol. 13, no. 8, Apr. 2023, doi: 10.3390/app13084914
  23. D. del-Pozo-Bueno, D. Kepaptsoglou, F. Peiró, and S. Estradé, “Comparative of machine learning classification strategies for electron energy loss spectroscopy: Support vector machines and artificial neural networks,” Ultramicroscopy, vol. 253, Nov. 2023, doi: 10.1016/j.ultramic.2023.113828
  24. O. A. Montesinos LĂłpez, A. Montesinos LĂłpez, and J. Crossa, Multivariate Statistical Machine Learning Methods for Genomic Prediction. Springer International Publishing, 2022. doi: 10.1007/978-3-030-89010-0
  25. A. A. Khan, A. A. Laghari, and S. A. Awan, “Machine Learning in Computer Vision: A Review,” EAI Endorsed Transactions on Scalable Information Systems, vol. 8, no. 32, pp. 1–11, 2021, doi: 10.4108/eai.21-4-2021.169418
  26. Y. E. Almalki et al., “Isolated Convolutional-Neural-Network-Based Deep-Feature Extraction for Brain Tumor Classification Using Shallow Classifier,” Diagnostics, vol. 12, no. 8, Aug. 2022, doi: 10.3390/diagnostics12081793
  27. A. P. Wibawa et al., “Decoding and preserving Indonesia’s iconic Keris via A CNN-based classification,” Telematics and Informatics Reports, vol. 13, Mar. 2024, doi: 10.1016/j.teler.2024.100120
  28. N. E. W. Nugroho and A. Harjoko, “Transliteration of Hiragana and Katakana Handwritten Characters Using CNN-SVM,” IJCCS (Indonesian Journal of Computing and Cybernetics Systems), vol. 15, no. 3, p. 221, Jul. 2021, doi: 10.22146/ijccs.66062
  29. M. Abdullah, M. Ahmad, and D. Han, “Facial Expression Recognition in Videos: An CNN-LSTM based Model for Video Classification,” in 2020 International Conference on Electronics, Information, and Communication, ICEIC 2020, Institute of Electrical and Electronics Engineers Inc., Jan. 2020. doi: 10.1109/ICEIC49074.2020.9051332
  30. M. N. Ab Wahab, A. Nazir, A. T. Z. Ren, M. H. M. Noor, M. F. Akbar, and A. S. A. Mohamed, “Efficientnet-Lite and Hybrid CNN-KNN Implementation for Facial Expression Recognition on Raspberry Pi,” IEEE Access, vol. 9, pp. 134065–134080, 2021, doi: 10.1109/ACCESS.2021.3113337
  31. M. M. I. Al-Ghiffary, C. A. Sari, E. H. Rachmawanto, N. M. Yacoob, N. R. D. Cahyo, and R. R. Ali, “Milkfish Freshness Classification Using Convolutional Neural Networks Based on Resnet50 Architecture,” Advance Sustainable Science Engineering and Technology, vol. 5, no. 3, p. 0230304, Oct. 2023, doi: 10.26877/asset.v5i3.17017
  32. Q. A. Putra, C. A. Sari, E. H. Rachmawanto, N. R. D. Cahyo, E. Mulyanto, and M. A. Alkhafaji, “White Bread Mold Detection using K-Means Clustering Based on Grey Level Co-Occurrence Matrix and Region of Interest,” in 2023 International Seminar on Application for Technology of Information and Communication (iSemantic), 2023, pp. 376–381. doi: 10.1109/iSemantic59612.2023.10295369
  33. V. Podgorelec, Š. Pečnik, and G. Vrbančič, “Classification of similar sports images using convolutional neural network with hyper-parameter optimization,” Applied Sciences (Switzerland), vol. 10, no. 23, pp. 1–24, Dec. 2020, doi: 10.3390/app10238494
  34. J. Zhang et al., “Deep Learning for Microfluidic-Assisted Caenorhabditis elegans Multi-Parameter Identification Using YOLOv7,” Micromachines (Basel), vol. 14, no. 7, p. 1339, Jun. 2023, doi: 10.3390/mi14071339
  35. Z. Liu, Z. Shen, S. Li, K. Helwegen, D. Huang, and K.-T. Cheng, “How do adam and training strategies help bnns optimization,” in International conference on machine learning, PMLR, 2021, pp. 6936–6946
  36. M. Reyad, A. M. Sarhan, and M. Arafa, “A modified Adam algorithm for deep neural network optimization,” Neural Comput Appl, vol. 35, no. 23, pp. 17095–17112, Aug. 2023, doi: 10.1007/s00521-023-08568-z
  37. A. Kumar, S. Sarkar, and C. Pradhan, “Malaria Disease Detection Using CNN Technique with SGD, RMSprop and ADAM Optimizers,” in Deep Learning Techniques for Biomedical and Health Informatics, S. Dash, B. R. Acharya, M. Mittal, A. Abraham, and A. Kelemen, Eds., Cham: Springer International Publishing, 2020, pp. 211–230. doi: 10.1007/978-3-030-33966-1_11
  38. J. Isański, S. Kupiński, M. Leszkowicz, W. Andrzejewski, and A. Bykowski, “Outdoor fitness activity under COVID-19 restrictions. Wearable devices, images, and posts as sources of information on users,” Człowiek i Społeczeństwo, vol. 55, pp. 115–139, Jul. 2023, doi: 10.14746/cis.2023.55.7
  39. A. Theissler, M. Thomas, M. Burch, and F. Gerschner, “ConfusionVis: Comparative evaluation and selection of multi-class classifiers based on confusion matrices,” Knowl Based Syst, vol. 247, Jul. 2022, doi: 10.1016/j.knosys.2022.108651
  40. I. Markoulidakis and G. Markoulidakis, “Probabilistic Confusion Matrix: A Novel Method for Machine Learning Algorithm Generalized Performance Analysis,” Technologies (Basel), vol. 12, no. 7, p. 113, Jul. 2024, doi: 10.3390/technologies12070113

Last update:

No citation recorded.

Last update: 2025-07-25 19:11:52

No citation recorded.