skip to main content

Comparison of Objective Weighting Methods in SAW and Their Effect on Alternative Ranking Results

1Department of Digital Business, Zhejiang Technical Institute of Economics, China

2Faculty of Engineering and Computer Science, Universitas Teknokrat Indonesia, Indonesia

3Faculty of Engineering and Computer Science, Universitas Bina Sarana Informatika, Indonesia

Received: 10 Oct 2025; Revised: 28 Jan 2026; Accepted: 18 Feb 2026; Published: 20 Feb 2026.
Open Access Copyright (c) 2026 The authors. Published by Department of Informatics Universitas, Diponegoro
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Determining the weights of criteria is a vital stage in multi-criteria decision making, yet it often suffers from evaluator subjectivity and unstable results when relying on expert judgment. Dependence on human perception may also lead to inconsistencies among criteria, highlighting the need for objective, data-driven approaches to generate rational and measurable weights. This study analyzes and compares six objective weighting methods—Entropy, MEREC, RECA, G2M, LOPCOW, and CRITIC—in the selection of new store locations. Each method applies distinct mathematical principles but shares a common foundation in objective data analysis, free from subjective bias. The findings reveal that criterion S5 consistently receives the highest weight, emphasizing its dominant role in decision outcomes. Using the Simple Additive Weighting (SAW) method, New Store Location 5 ranks first across all weighting techniques, followed by Locations 3 and 8. The Spearman correlation test confirms a high level of consistency among methods, with coefficients of 1 for RECA, G2M, and LOPCOW, and 0.9879 for Entropy, MEREC, and CRITIC. These results demonstrate that objective weighting methods produce stable and reliable evaluations, effectively supporting data-based strategic decision making in multi-criteria contexts.

Fulltext View|Download

Article Metrics:

  1. I. Naz et al., “Integrated Geospatial and Geostatistical Multi-Criteria Evaluation of Urban Groundwater Quality Using Water Quality Indices,” Water, vol. 16, no. 17, p. 2549, Sep. 2024, doi: 10.3390/w16172549
  2. R. R. Oprasto, J. Wang, A. F. O. Pasaribu, S. Setiawansyah, R. Aryanti, and Sumanto, “An Entropy-Assisted COBRA Framework to Support Complex Bounded Rationality in Employee Recruitment,” Bull. Comput. Sci. Res., vol. 5, no. 3 SE-, pp. 207–218, Apr. 2025, doi: 10.47065/bulletincsr.v5i3.505
  3. S. Chen, “The Application of Big Data and Fuzzy Decision Support Systems in the Innovation of Personalized Music Teaching in Universities,” Int. J. Comput. Intell. Syst., vol. 17, no. 1, p. 215, 2024, doi: 10.1007/s44196-024-00623-4
  4. E. Roszkowska and T. Wachowicz, “Impact of Normalization on Entropy-Based Weights in Hellwig’s Method: A Case Study on Evaluating Sustainable Development in the Education Area,” Entropy, vol. 26, no. 5. 2024. doi: 10.3390/e26050365
  5. M. Hashemi-Tabatabaei, M. Amiri, and M. Keshavarz-Ghorabaee, “An Expected Value-Based Symmetric–Asymmetric Polygonal Fuzzy Z-MCDM Framework for Sustainable–Smart Supplier Evaluation,” Information, vol. 16, no. 3. 2025. doi: 10.3390/info16030187
  6. A. Puška, D. Božanić, Z. Mastilo, and D. Pamučar, “Extension of MEREC-CRADIS methods with double normalization-case study selection of electric cars,” Soft Comput., vol. 27, no. 11, pp. 7097–7113, 2023, doi: 10.1007/s00500-023-08054-7
  7. S. Chakraborty, P. Chatterjee, and P. P. Das, “Measurement Alternatives and Ranking according to Compromise Solution (MARCOS) Method,” in Multi-Criteria Decision-Making Methods in Manufacturing Environments, Apple Academic Press, 2024, pp. 297–307, doi: 10.31181/dmame7220241137
  8. C. Z. Radulescu and M. Radulescu, “A Hybrid Group Multi-Criteria Approach Based on SAW, TOPSIS, VIKOR, and COPRAS Methods for Complex IoT Selection Problems,” Electronics, vol. 13, no. 4, p. 789, Feb. 2024, doi: 10.3390/electronics13040789
  9. A. Sahin, G. Imamoglu, M. Murat, and E. Ayyildiz, “A holistic decision-making approach to assessing service quality in higher education institutions,” Socioecon. Plann. Sci., vol. 92, p. 101812, 2024, doi: 10.1016/j.seps.2024.101812
  10. N. Vafaei, R. A. Ribeiro, and L. M. Camarinha-Matos, “Assessing Normalization Techniques for Simple Additive Weighting Method,” Procedia Comput. Sci., vol. 199, pp. 1229–1236, 2022, doi: 10.1016/j.procs.2022.01.156
  11. J. Wang, S. Setiawansyah, and Y. Rahmanto, “Decision Support System for Choosing the Best Shipping Service for E-Commerce Using the SAW and CRITIC Methods,” J. Ilm. Inform. dan Ilmu Komput., vol. 3, no. 2, pp. 101–109, 2024, doi: 10.58602/jima-ilkom.v3i2.32
  12. Do Duc Trung, Nazlı Ersoy, Tran Van Dua, Duong Van Duc, and Manh Thi Diep, “M-OPARA: A Modified Approach to the OPARA Method,” Decis. Mak. Appl. Manag. Eng., vol. 8, no. 1 SE-Regular articles, pp. 256–275, Feb. 2025, doi: 10.31181/dmame8120251334
  13. I. Đalić, Ž. Stević, C. Karamasa, and A. Puška, “A novel integrated fuzzy PIPRECIA–interval rough SAW model: Green supplier selection,” Decis. Mak. Appl. Manag. Eng., vol. 3, no. 1, pp. 126–145, 2020, doi: 10.31181/dmame2003114d
  14. P. Rani, A. R. Mishra, D. Pamucar, A. M. Alshamrani, and A. F. Alrasheedi, “Assessment of digital transformation indicators to prioritize sustainable financial services using q-rung orthopair fuzzy rough decision-making model,” Appl. Soft Comput., vol. 170, p. 112715, 2025, doi: 10.1016/j.asoc.2025.112715
  15. M. MARUF and K. ÖZDEMİR, “Ranking of Tourism Web Sites According to Service Performance Criteria with CRITIC and MAIRCA Methods: The Case of Turkey,” Uluslararası Yönetim Akad. Derg., vol. 6, no. 4, pp. 1108–1117, Jan. 2024, doi: 10.33712/mana.1352560
  16. T. Singh, V. Singh, L. Ranakoti, and S. Kumar, “Optimization on tribological properties of natural fiber reinforced brake friction composite materials: Effect of objective and subjective weighting methods,” Polym. Test., vol. 117, p. 107873, Jan. 2023, doi: 10.1016/j.polymertesting.2022.107873
  17. R. D. Gunawan, M. W. Arshad, A. D. Wahyudi, R. R. Suryono, T. Widodo, and F. Ulum, “Modification of Additive Ratio Assessment Method through Distance-Based Weighting Approach for Optimizing Assessment Accuracy,” Paradig. - J. Komput. dan Inform., vol. 27, no. 2 SE-Articles, pp. 55–64, doi: 10.31294/p.v27i2.8810
  18. H. Bai, F. Feng, J. Wang, and T. Wu, “A Combination Prediction Model of Long-Term Ionospheric foF2 Based on Entropy Weight Method,” Entropy, vol. 22, no. 4. 2020. doi: 10.3390/e22040442
  19. J. Wang, D. Darwis, S. Setiawansyah, and Y. Rahmanto, “Implementation of MABAC Method and Entropy Weighting in Determining the Best E-Commerce Platform for Online Business,” JiTEKH, vol. 12, no. 2, pp. 58–68, 2024, doi: 10.35447/jitekh.v12i2.1000
  20. T. Van Dua, D. Van Duc, N. C. Bao, and D. D. Trung, “Integration of objective weighting methods for criteria and MCDM methods: application in material selection,” EUREKA Phys. Eng., no. 2, pp. 131–148, Mar. 2024, doi: 10.21303/2461-4262.2024.003171
  21. S. Kousar, A. Ansar, N. Kausar, and G. Freen, “Multi-Criteria Decision-Making for Smog Mitigation: A Comprehensive Analysis of Health, Economic, and Ecological Impacts,” Spectr. Decis. Mak. Appl., vol. 2, no. 1 SE-Articles, pp. 53–67, Jan. 2025, doi: 10.31181/sdmap2120258
  22. A. Asistyasari, M. W. Arshad, I. Chandra, Y. Nuryaman, and V. H. Saputra, “Integration of RECA Weighting and MARCOS Methods in Decision Support Systems for the Selection of the Best Customer Recommendations,” J. Inform. dan Rekayasa Perangkat Lunak, vol. 6, no. 2 SE-Articles, pp. 122–136, Jun. 2025, doi: 10.33365/jatika.v6i2.219
  23. D. A. Megawaty, D. Damayanti, S. Sumanto, P. Permata, D. Setiawan, and S. Setiawansyah, “Development of a Decision Support System Based on New Approach Respond to Criteria Weighting Method and Grey Relational Analysis: Case Study of Employee Recruitment Selection,” JOIV Int. J. Informatics Vis., vol. 9, no. 1, 2025, doi: 10.62527/joiv.9.1.2744
  24. F. Ulum et al., “Combination of Response to Criteria Weighting Method and Multi-Attribute Utility Theory in the Decision Support System for the Best Supplier Selection,” J-INTECH (Journal Inf. Technol., vol. 13, no. 01, pp. 33–47, 2025, doi: 10.32664/j-intech.v13i01.1810
  25. N. Hendrastuty, S. Setiawansyah, M. G. An’ars, F. A. Rahmadianti, V. H. Saputra, and M. Rahman, “G2M weighting: a new approach based on multi-objective assessment data (case study of MOORA method in determining supplier performance evaluation),” Indones. J. Electr. Eng. Comput. Sci., vol. 38, no. 1, pp. 403–416, 2025, doi: 10.11591/ijeecs.v38.i1.pp403-416
  26. Y. Rahmanto, J. Wang, S. Setiawansyah, A. Yudhistira, D. Darwis, and R. R. Suryono, “Optimizing Employee Admission Selection Using G2M Weighting and MOORA Method,” Paradig. - J. Komput. dan Inform., vol. 27, no. 1 SE-, pp. 1–10, Mar. 2025, doi: 10.31294/p.v27i1.8224
  27. S. Biswas, D. Pamucar, S. Dawn, and V. Simic, “Evaluation based on Relative Utility and Nonlinear Standardization (ERUNS) Method for Comparing Firm Performance in Energy Sector,” Decis. Mak. Adv., vol. 2, no. 1 SE-Articles, pp. 1–21, Jan. 2024, doi: 10.31181/dma21202419
  28. D. T. Do, “Assessing the Impact of Criterion Weights on the Ranking of the Top Ten Universities in Vietnam,” Eng. Technol. Appl. Sci. Res., vol. 14, no. 4 SE-, pp. 14899–14903, Aug. 2024, doi: 10.48084/etasr.7607
  29. S. H. Hadad, I. Chandra, J. Wang, D. A. Megawaty, S. Setiawansyah, and A. Yudhistira, “DYNAMIC WEIGHT ALLOCATION IN MODIFIED MULTI-ATRIBUTIVE IDEAL-REAL COMPARATIVE ANALYSIS WITH SYMMETRY POINT FOR REAL-TIME DECISION SUPPORT ,” J. Tek. Inform., vol. 6, no. 1 SE-Articles, pp. 63–74, Feb. 2025, doi: 10.52436/1.jutif.2025.6.1.4170
  30. R. Varshney and P. Singh, “Optimizing of Novel Magnetic Field-Assisted Electrical Discharge Turning Parameters for Machining EN24 Steel Alloy Using Response Surface Methodology and MCDM-Based CRITIC–TOPSIS Method,” Arab. J. Sci. Eng., 2024, doi: 10.1007/s13369-024-09537-x
  31. A. R. Krishnan, M. M. Kasim, R. Hamid, and M. F. Ghazali, “A Modified CRITIC Method to Estimate the Objective Weights of Decision Criteria,” Symmetry (Basel)., vol. 13, no. 6, p. 973, May 2021, doi: 10.3390/sym13060973
  32. M. Anjum, H. Min, and Z. Ahmed, “Healthcare Waste Management through Multi-Stage Decision-Making for Sustainability Enhancement,” Sustainability, vol. 16, no. 11. 2024. doi: 10.3390/su16114872
  33. M. P. Libório, R. Karagiannis, A. M. A. Diniz, P. I. Ekel, D. A. G. Vieira, and L. C. Ribeiro, “The Use of Information Entropy and Expert Opinion in Maximizing the Discriminating Power of Composite Indicators,” Entropy, vol. 26, no. 2, p. 143, Feb. 2024, doi: 10.3390/e26020143
  34. R. Aldisa, F. Nugroho, M. Mesran, S. A. Sinaga, and K. Sussolaikah, “Sistem Pendukung Keputusan Menentukan Sales Terbaik Menerapkan Metode Simple Additive Weighting (SAW),” J. Inf. Syst. Res., vol. 3, no. 4 SE-Articles, Jul. 2022, doi: 10.47065/josh.v3i4.1955
  35. H. Gaspars-Wieloch and D. Gawroński, “How can one improve SAW and max-min multi-criteria rankings based on uncertain decision rules?,” Oper. Res. Decis., vol. 34, no. 1, 2024, doi: 10.37190/ord240107

Last update:

No citation recorded.

Last update: 2026-02-20 11:16:18

No citation recorded.