BibTex Citation Data :
@article{JSINBIS17357, author = {Jemaictry Tamaela and Eko Sediyono and Adi Setiawan}, title = {Implementasi Metode Association Rule untuk Menganalisis Data Twitter tentang Badan Penyelenggara Jaminan Sosial dengan Algoritma Frequent Pattern-Growth}, journal = {Jurnal Sistem Informasi Bisnis}, volume = {8}, number = {1}, year = {2018}, keywords = {Association rule; Data Mining; Knowledge Discover; FP-Growth; Twitter; BPJS.}, abstract = { BPJS services cannot be separated from criticism and complaints of the people in Indonesia. Twitter is one of the social media choose to share experiences related to things about BPJS. The information that is shared can be processed to gain new knowledge (knowledge discovery), which is related to public opinion about BPJS. Tweets collected from the national BJPS twitter are divided into words, then, specified words can be used as items to form the itemset. The association rule technique with the FP-Growth algorithm that is implemented in the application can process text data from Twitter to form the item set. Each item set contains a collection of tweets that are responses and the opinion of the community about an event or phenomenon related to BPJS services. The tree structure of FP-Growth simplifies the process of the validation because it can track and display the frequency of occurrence of each word and itemset, before and after branch pruning which is not included in the support value. The OSM API integration with the application in this study provides visual information about where the tweet comes from, so it can be used to generate itemset from a collection of tweets from a particular region. }, issn = {2502-2377}, pages = {25--33} doi = {10.21456/vol8iss1pp25-33}, url = {https://ejournal.undip.ac.id/index.php/jsinbis/article/view/17357} }
Refworks Citation Data :
BPJS services cannot be separated from criticism and complaints of the people in Indonesia. Twitter is one of the social media choose to share experiences related to things about BPJS. The information that is shared can be processed to gain new knowledge (knowledge discovery), which is related to public opinion about BPJS. Tweets collected from the national BJPS twitter are divided into words, then, specified words can be used as items to form the itemset. The association rule technique with the FP-Growth algorithm that is implemented in the application can process text data from Twitter to form the item set. Each item set contains a collection of tweets that are responses and the opinion of the community about an event or phenomenon related to BPJS services. The tree structure of FP-Growth simplifies the process of the validation because it can track and display the frequency of occurrence of each word and itemset, before and after branch pruning which is not included in the support value. The OSM API integration with the application in this study provides visual information about where the tweet comes from, so it can be used to generate itemset from a collection of tweets from a particular region.
Article Metrics:
Last update:
Analyzing Radicalism-Related Conversation Patterns on Twitter: A Comparative Study of Association Rules with Apriori and FP-Growth Algorithms
Last update: 2025-01-27 00:10:58
Authors who submit the manuscripts to Journal JSINBIS must understand and agree that if the manuscript is accepted for publication, the copyright of the article belongs to JSINBIS and Diponegoro University as the journal publisher.
Copyright includes the exclusive right to reproduce and provide articles in all forms and media, including reprints, photographs, microfilm and any other similar reproductions, as well as translations. The author reserves the rights to the following:
JSINBIS and Diponegoro University and the Editors make every effort to ensure that no false or misleading data, opinions or statements are published in this journal. The content of articles published in JSINBIS is the sole and exclusive responsibility of the respective authors.
Copyright transfer agreement can be found here: [Copyright transfer agreement in doc] and [Copyright transfer agreement in pdf].
JSINBIS (Jurnal Sistem Informasi Bisnis) is published by the Magister of Information Systems, Post Graduate School Diponegoro University. It has e-ISSN: 2502-2377 dan p-ISSN: 2088-3587 . This is a National Journal accredited SINTA 2 by RISTEK DIKTI No. 48a/KPT/2017.
Journal JSINBIS which can be accessed online by http://ejournal.undip.ac.id/index.php/jsinbis is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats