Pemanfaatan Metode Association Rules dan Holt-Winter Multiplicative untuk Meningkatkan Peluang Penjualan Obat Pertanian

Dwi Setiawan  -  Universitas Kristen Satya Wacana, Indonesia
*Eko Sediyono scopus  -  Universitas Kristen Satya Wacana, Indonesia
Irwan Sembiring  -  Universitas Kristen Satya Wacana, Indonesia
Received: 11 Feb 2020; Revised: 24 Mar 2020; Accepted: 25 Mar 2020; Published: 27 May 2020; Available online: 27 May 2020.
DOI: https://doi.org/10.21456/vol10iss1pp46-55 View
CTA Agreement
Subject
Type Research Instrument
  Download (646KB)    Indexing metadata
Open Access
Citation Format:
Abstract

The competition level between companies on executing product marketing is rapidly increasing, so the companies have to understand the importance of correlation between external environments of company with consumer’s needs. One of the efforts that can be done is by utilizing data warehouse and the application of infrastructure in information and technology field. This research combined Association Rules  method to extracting pattern and finding every possibility that potential to increase sales and Holt-Winter Multiplicative method to estimate the alteration of trend on the seasonal data. After passed through data processing process by using RapidMiner tools, information that consists of correlation pattern between rule that describe the comparison of product and the sales working area and season that affects the product sale. The pattern used by company to know which product is often purchased by customer. Besides that, this research produces changing trend data of PT ABC’s product that generated by result of previous data comparison with forecast data. Based on value of error rate Mean Absolute Percentage Error (MAPE) in estimating forecast result on the PT ABC’s sales transaction data during 3 years, it shows good level of accuracy. Result of data test, by considering rule that formed and forecast result so the company can control and manage product in order to avoid incorrect sales. This thing will effect on repression of operational cost and PT ABC can identify available opportunities to increase sale of agricultural medicine.

Note: This article has supplementary file(s).

Keywords: Association Rules; Holt-Winter Multiplicative; Sales Opportunity; Distributor; B2B

Article Metrics:

  1. Alfiah, F., Pandhito, B.W., Sunarni, A.T., Muharam, D., & Matusin, P.R., 2018. Data mining systems to determine sales trends and quantity forecast using association rule miningand CRISP-DM Method. International Journal of Engineering and Techniques, 4(1), 186–192. Retrieved from http://www.ijetjournal.org
  2. Booranawong, T. & Booranawong, A., 2018. Double exponential smoothing and Holt-Winters methods with optimal initial values and weighting factors for forecasting lime, Thai chili and lemongrass prices in Thailand. Engineering and Applied Science Research, 45(1), 32–38. https://doi.org/10.14456/easr.2018.5
  3. Chisholm, A., 2013. Exploring Data with RapidMiner
  4. Direktorat Jenderal Prasarana & Sarana Pertanian, D. P. dan P., 2015. Buku Pupuk Terdaftar, 2016
  5. Emmanuel, O.O., Adebanji, A., & Labeodan, O., 2014. Using holt winter ’ s multiplicative model to forecast assisted childbirths at the teaching hospital in Ashanti Region , Ghana. 4(9), 83–89
  6. Han, J., & C. Aggarwal, C., 2014. Frequent Pattern Mining. In Frequent Pattern Mining (Vol. 9783319078). https://doi.org/10.1007/978-3-319-07821-2_3
  7. Han, J., Kamber, M., & Pei, J., 2012. Data mining: Data mining concepts and techniques. https://doi.org/10.1109/ICMIRA.2013.45
  8. Hansun, S. (2017). New estimation rules for unknown parameters on holt-winters multiplicative method. Journal of Mathematical and Fundamental Sciences, 49(2), 127–135. https://doi.org/10.5614/j.math.fund.sci.2017.49.2.3
  9. Hofmann, M., & Klinkenberg, R., 2013. Rapid Miner Data Mining Use Cases and Business Analytics Applications. https://doi.org/78-1-4822-0550-3
  10. Irfiani, E., 2019. Application of Apriori Algorithms to Determine Associations in Outdoor Sports Equipment Stores. SinkrOn, 3(2), 218. https://doi.org/10.33395/sinkron.v3i2.10089
  11. Kotu, V., & Deshpande, B., 2015. Predictive Analytics and Data Mining - Chapter3: Data Exploration. In Predictive Analytics and Data Mining. https://doi.org/10.1016/B978-0-12-801460-8.00010-0
  12. Padang, E., Tarigan, G., & Sinulingga, U., 2013. Peramalan jumlah penumpang kereta api medan-rantau prapat dengan metode pemulusan eksponensial Holt-Winters. Saintia Matematika, 1(2), 161–174
  13. Pramasani, E. M., & Soelistyono, R., 2018. Dampak Perubahan Iklim Terhadap Perubahan Musim Tanam Padi ( Oryza sativa L .) di Kabupaten Malang. 3(2), 85–93
  14. Pramono, S.A.D., 2014. Pengaruh modal sosial terhadap kemiskinan rumah tangga. JEJAK Journal of Economics and Policy, 7(2), 109–120. https://doi.org/10.15294/jejak.v7i1.3596
  15. Raorane, A.A., R.V, K., & B.D., J., 2012. Association rule mining– extracting knowledge using market basket analysis. Research Journal of Recent Sciences, 1(2), 19–27
  16. Ribeiro, A., Seruca, I., & Durão, N., 2017. Improving organizational decision support : Detection of outliers and sales prediction for a pharmaceutical distribution company. Procedia Computer Science, 121, 282–290. https://doi.org/10.1016/j.procs.2017.11.039
  17. Saxena, N., 2017. ESCORT (Enterprise Services Cross-sell Optimization Using Rigorous Tests of Association). Advances in Economics and Business, 5(5), 239–245. https://doi.org/10.13189/aeb.2017.050501
  18. Silwattananusarn, T., & Kulthidatuamsuk, A.P., 2012. Data Mining and Its Applications for Knowledge Management : A Literature Review from 2007 to 2012. International Journal of Data Mining & Knowledge Management Process, 2(5), 13–24. https://doi.org/10.5121/ijdkp.2012.2502
  19. Stasiun Klimatologi Semarang, B., 2018. Perkiraan Musim Hujan 2018 / 2019 Jawa Tengah. Journal of Chemical Information and Modeling (Vol. 53). https://doi.org/10.1017/CBO9781107415324.004
  20. Sugiarto, V.C., Sarno, R., & Sunaryono, D., 2016. Sales Forecasting Using Holt-Winters in Enterprise Resource Planning At Sales and Distribution Module. 8–13
  21. Surmaini, E., & Syahbuddin, H., 2016. Kriteria awal musim tanam: tinjauan prediksi waktu tanam padi di Indonesia. Jurnal Penelitian Dan Pengembangan Pertanian, 35(2), 47. https://doi.org/10.21082/jp3.v35n2.2016.p47-56
  22. Syahromi, T., & Sumitra, I.D., 2019. Forecasting Hotel Expenses using the Arima Method. IOP Conference Series: Materials Science and Engineering, 662(2). https://doi.org/10.1088/1757-899X/662/2/022108

Last update: 2021-02-27 19:58:43

No citation recorded.

Last update: 2021-02-27 19:58:45

No citation recorded.