BibTex Citation Data :
@article{JSINBIS29127, author = {Oky Nurhayati}, title = {Pengolahan Citra untuk Identifikasi Jenis Telur Ayam Lehorn dan Omega-3 Menggunakan K-Mean Clustering dan Principal Component Analysis}, journal = {JSINBIS (Jurnal Sistem Informasi Bisnis)}, volume = {10}, number = {1}, year = {2020}, keywords = {Chicken eggs; PCA; Morphological operations; K-mean clustering; First-order feature extraction}, abstract = { Chicken eggs are divided into several types including omega-3 chicken eggs, native chicken eggs, Arab chicken eggs, and domestic chicken eggs. Visually to distinguish the type of domestic and omega-3 chicken eggs have difficulty because physically the shape of the eggshell and the color of the chicken eggs look the same. Visual inspection of the two types of chicken eggs has a weakness because it only relies on the sense of sight that has limitations, and the results are less accurate because it is very dependent on the interpretation of each consumer. This research aims to distinguish the two types of domestic and omega-3 chicken eggs which pre-processing techniques of contrast stretching, brightness, histogram equalization, changing color images to gray images, then the k-mean image segmentation process is carried out. clustering, morphological operations, dilation, and erosion. Next, the first-order statistical feature extraction is done by calculating values namely mean, variance, entropy, skewness, and kurtosis results from the histogram. The final step is to look for eigenvalues, the eigen vector PCA method used to distinguish omega-3 egg types. The results in the form of plot graphs of mean and entropy features after the second rotation show that the first-order statistical feature extraction method and PCA method can be used to significantly distinguish the types of lehorn chicken and omega-3 chicken eggs. }, issn = {2502-2377}, pages = {84--93} doi = {10.21456/vol10iss1pp84-93}, url = {https://ejournal.undip.ac.id/index.php/jsinbis/article/view/29127} }
Refworks Citation Data :
Chicken eggs are divided into several types including omega-3 chicken eggs, native chicken eggs, Arab chicken eggs, and domestic chicken eggs. Visually to distinguish the type of domestic and omega-3 chicken eggs have difficulty because physically the shape of the eggshell and the color of the chicken eggs look the same. Visual inspection of the two types of chicken eggs has a weakness because it only relies on the sense of sight that has limitations, and the results are less accurate because it is very dependent on the interpretation of each consumer. This research aims to distinguish the two types of domestic and omega-3 chicken eggs which pre-processing techniques of contrast stretching, brightness, histogram equalization, changing color images to gray images, then the k-mean image segmentation process is carried out. clustering, morphological operations, dilation, and erosion. Next, the first-order statistical feature extraction is done by calculating values namely mean, variance, entropy, skewness, and kurtosis results from the histogram. The final step is to look for eigenvalues, the eigen vector PCA method used to distinguish omega-3 egg types. The results in the form of plot graphs of mean and entropy features after the second rotation show that the first-order statistical feature extraction method and PCA method can be used to significantly distinguish the types of lehorn chicken and omega-3 chicken eggs.
Article Metrics:
Last update:
Last update: 2023-09-23 21:38:24
Penulis yang mengirimkan naskah harus memahami dan menyetujui bahwa jika diterima untuk dipublikasikan, hak cipta dari artikel adalah milik JSINBIS dan Universitas Diponegoro sebagai penerbit jurnal.Hak cipta (copyright) meliputi hak eksklusif untuk mereproduksi dan memberikan artikel dalam semua bentuk dan media, termasuk cetak ulang, foto, mikrofilm dan setiap reproduksi lain yang sejenis, serta terjemahan. Penulis mempunyai hak untuk hal-hal berikut:
JSINBIS dan Universitas Diponegoro serta Editor melakukan segala upaya untuk memastikan bahwa tidak ada data, pendapat atau pernyataan yang salah atau menyesatkan yang dipublikasikan di jurnal ini. Isi artikel yang diterbitkan di JSINBIS adalah tanggung jawab tunggal dan eksklusif dari masing-masing penulis.
View My Stats This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.