Pengolahan Citra untuk Identifikasi Jenis Telur Ayam Lehorn dan Omega-3 Menggunakan K-Mean Clustering dan Principal Component Analysis

*Oky Dwi Nurhayati orcid scopus  -  Diponegoro University, Indonesia
Received: 18 Mar 2020; Revised: 10 Jun 2020; Accepted: 11 Jun 2020; Published: 11 Jun 2020; Available online: 27 Jun 2020.
Open Access
Citation Format:
Abstract

Chicken eggs are divided into several types including omega-3 chicken eggs, native chicken eggs, Arab chicken eggs, and domestic chicken eggs. Visually to distinguish the type of domestic and omega-3 chicken eggs have difficulty because physically the shape of the eggshell and the color of the chicken eggs look the same. Visual inspection of the two types of chicken eggs has a weakness because it only relies on the sense of sight that has limitations, and the results are less accurate because it is very dependent on the interpretation of each consumer. This research aims to distinguish the two types of domestic and omega-3 chicken eggs which pre-processing techniques of contrast stretching, brightness, histogram equalization, changing color images to gray images, then the k-mean image segmentation process is carried out. clustering, morphological operations, dilation, and erosion. Next, the first-order statistical feature extraction is done by calculating values namely mean, variance, entropy, skewness, and kurtosis results from the histogram. The final step is to look for eigenvalues, the eigen vector PCA method used to distinguish omega-3 egg types. The results in the form of plot graphs of mean and entropy features after the second rotation show that the first-order statistical feature extraction method and PCA method can be used to significantly distinguish the types of lehorn chicken and omega-3 chicken eggs.

Keywords: Chicken eggs; PCA; Morphological operations; K-mean clustering; First-order feature extraction

Article Metrics:

  1. Cholifah, S., dan Yudha P., 2013. Perancangan Sistem Identifikasi Fertilitas dan Daya Tetas Telur Itik Berbasis Digital Image Processing, ITS-paper-32067-2509100160-paper, http://digilib.its.ac.id/public/ITS-paper-32067-2509100160-paper.pdf diakses tanggal 17 Maret 2020
  2. Gonzales., R.C., Richard E Woods, 2018. Digital Image Processing, 4th Edition, Pearson
  3. Harsadi, P., 2014, Deteksi Embrio Ayam Berdasarkan Citra Grayscale Menggunakan K-Means Automatic Thresholding, J. Ilmiah Sinus, STMIK Sinar Nusantara Surakarta, 12(2)
  4. Malewadkar, Praise., Fedrick Carvalho., Sweety Naik,Norman Dias., 2017. Eggs Defect Detection using Image Processing, International Journal of Engineering Research & Technology (IJERT), 6 (07), 91-93
  5. Muzami, A., Nurhayati, O.D., Kurniawan, T.M, 2016. Aplikasi Identifikasi Citra Telur Ayam Omega-3 Dengan Metode Segmentasi Region Of Interest Berbasis Android, Jurnal Teknologi dan Sistem Komputer, Teknik Komputer Fakultas Teknik, UNDIP, 4 (2), 380-388
  6. Nawawi, M. Zaen, Romi F.R, M.Fadly S., 2015. Klasifikasi Telur Fertil dan Infertil Menggunakan Jaringan Saraf Tiruan Multilayer Perceptron Berdasarkan Ekstraksi Fitur Warnadan Bentuk, Jurnal Teknologi Informasi dan Komunikasi,4 (2), 100 – 109
  7. Nurhayati, O.D,, Dania, E., Ajik, U., 2019, Ekstraksi Ciri Orde Pertama dan Metode Principal Component Analysis untuk Mengidentifikasi Jenis Telur Ayam Kampung dan Ayam Arab, Jurnal Sistem Informasi Bisnis, Magister Sistem Informasi, UNDIP, 9(2),.133-140
  8. Nurhayati, O.D., 2015. Sistem Analisis Tekstur Secara Statistik Orde Pertama Untuk Mengenali Jenis Telur Ayam Biasa dan Telur Ayam Omega-3, Jurnal Sistem Komputer (JSISKOM), Teknik Komputer Fakultas Teknik UNDIP, 5 (2)
  9. Nurhayati, O.D., Diana, N.A., Nuryanto, Ninik Rustanti, 2018. Pengolahan Citra dengan Segmentasi Thresholding untuk Pemilihan Kualitas Telur Asin, Jurnal Sistem Informasi Bisnis, Magister Sistem Informasi, UNDIP, 8 (1), 42-28
  10. Nurhayati, O.D., Kurniawan, T.M., Cintya, A.P., 2016. Omega-3 Chicken Egg Detection System using a Mobile-based Image Processing Segmentation Method, Prosiding Eighth International Conference on Graphic and Image Processing (ICGIP 2016), Tokyo, Japan 29-31 Oktober, 1025-1031
  11. Nurhayati, O.D., Sri W., Susanto, A., Maesadji, T., 2011. Principal component analysis combined with First Order Statistikal Method for Breast Thermal Images Classification, International Journal Computer and Science Technology (IJCST), 2(2), 12-18
  12. Rancapan, J.G.C., Edwin R.A, Jesusimo L. Dioses Jr, Rhowel M.D., 2019. Egg Fertility Detection Using Image Processing And Fuzzy Logic, International Journal of Scientific & Technology Research, 8 (10), 3228 -3230
  13. Waranusast, R., Pongsakorn I., Donlaya, M., 2016. Egg Size Classification on Android Mobile DevicesUsing Image Processing and Machine Learning, The 2016 5th ICT International Student Project Conference (ICT-ISPC 2016), At Nakhonpathom, Thailand, 1-4
  14. Yudhana, A., Sunardi, Shoffan, S., 2016. Perbandingan Segmentasi Pada CitraAslidan Citra Kompresi Wavelet Untuk Identifikasi Telur, Jurnal Ilmiah ilkom, Fakultas Ilmu Komputer Universitas Muslim Indonesia,8 (3), 190-196

Last update: 2021-02-28 02:10:02

No citation recorded.

Last update: 2021-02-28 02:10:02

No citation recorded.