skip to main content

Analisa Implementasi Metode Fuzzy Time Series Jasim pada Prediksi Perkembangan COVID-19 di Indonesia

Dedy Rahman Prehanto  -  Universitas Negeri Surabaya, Indonesia
Ginanjar Setyo Permadi scopus  -  Universitas Hasyim Asy'ari, Indonesia
*Melvin Nurdiansari  -  Universitas Hasyim Asyari, Indonesia
Open Access Copyright (c) 2021 JSINBIS (Jurnal Sistem Informasi Bisnis)

Citation Format:
Abstract
The pandemic of COVID-19 that has been going on since March 2020 until now has weakened many sectors in many countries an Indonesia as well. In Indonesia, more than 9,000 people have died because of this pandemic. In the first week, 56 cases of COVID-19 were recorded and the cases continued to increase to more than 2,000 cases per week so that the increasing number of cases could result in a lack of service provision and facilities for medical. This study aims to determine the forecasting scheme and how the development of COVID-19 cases that occur in Indonesia. Fuzzy Time Series Jasim method that is applied to find out how to do forecasts by managing previous data.  This method uses the determination of the width of the interval, the formation of a set from historical data and using of the average based length method. In this method also used grouping and data relations that have been fuzzified. From the method that has been used, it can be seen that the results obtained from the Fuzzy Time Series Jasim method are obtained from the accuracy rate of the accuracy error using MAD of 286. And the error magnitude of the forecasting results with the actual data using MAPE is 2.43%. Where it can be concluded that the use of Fuzzy Time Series Jasim method in this study provides good forecasting results

Note: This article has supplementary file(s).

Fulltext View|Download View|Download |  Research Instrument
Untitled
Subject
Type Research Instrument
  Download (1MB)    Indexing metadata
 Research Instrument
Untitled
Subject
Type Research Instrument
  Download (1MB)    Indexing metadata
Keywords: COVID-19; Fuzzy Time Series Jasim; Forecasting

Article Metrics:

  1. Abd, F., Jalil, S.K., 2019. Meningkatnya angka pengangguran ditengah pandemi (COVID-19). Al-Mizan : Jurnal Ekonomi Syariah
  2. Indriyanti, A.D., Prehanto, D.R., Permadi, G.S., Mashuri, C. and Vitadiar, T.Z., 2019. Using fuzzy time series (FTS) and linear programming for production planning and planting pattern scheduling red onion. The 4th International Conference on Energy, Environment, Epidemiology and Information System (ICENIS 2019)
  3. Prehanto, D.R., Indriyanti, A.D., Mashuri, C. and Permadi, G.S., 2019. Soil moisture prediction using fuzzy time series and moisture sensor technology on shallot farming. The 4th International Conference on Energy, Environment, Epidemiology and Information System (ICENIS 2019)
  4. Permadi, G.S., Vitadiar, T.Z., Kistofer, T. and Mujianto, A.H., 2019. The Decision Making Trial and Evaluation Laboratory (Dematel) and Analytic Network Process (ANP) for Learning Material Evaluation System in E3S. Web of Conferences
  5. Permadi, G.S., Vitadiar, T.Z. and Kistofer, T., 2019. Sistem evaluasi bahan pembelajaran menggunakan metode DEMATEL dan ANP. J. Sist. Inf. BISNIS, 9(2): 228-235
  6. Jasim, H.T., Salim, A.G.J., Ibraheem, K.I., 2012. A novel algorithm to forecast enrollment. Applications and Applied Mathematics: An International Journal (AAM): 386-397
  7. Sucipto, L., dan Syaharuddin, S., 2018. Konstruksi forecasting system multi-model untuk pemodelan matematika pada peramalan indeks pembangunan manusia Provinsi Nusa Tenggara Barat. Jurnal Ilmiah Teknologi Sistem Informasi, 116-117
  8. Novita, Bettiza, M., Uperiati, A., 2019. Perbandingan tingkat akurasi metode fuzzy time series model markov chain dan metode Fuzzy Time Series Jasim untuk memprediksi jumlah penumpang kapal. Studi kasus: Pelabuhan Sri Bintan Pura dalam Negeri. Skripsi, UMRAH
  9. Pratikto, F.R., 2020. Prediksi Akhir Pandemi COVID-19 di Indonesia dengan Simulasi. J. Rekayasa Sistem Industri, (9) 2: 63-68
  10. Sudarsono, A., 2016. Jaringan syaraf tiruan untuk memprediksi laju pertumbuhan penduduk menggunakan metode Backpropagation studi kasus di Kota Bengkulu. J. Media Informasi: 61-69
  11. Tanhella, Z.V., Permadi, G.S., 2017. Sistem Informasi penentuan jumlah produksi jamur tiram menggunakan Metode Fuzzy Inference System (Fis) Tsukamoto. INOVATE (2)1: 11-16
  12. Yulian, E., Muflikhah, L., Dewi, C., 2018. Penerapan Metode Average-Based Fuzzy Time Series untuk prediksi konsumsi energi listrik Indonesia. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, (2)3 : 1283-1289
  13. Agus, P.W., 2020. Jaringan Saraf Tiruan : Algoritma Prediksi dan Implementasi. Yayasan Kita Menulis
  14. Douglas, C., Montgomery, C.L., Jennings, Kulahci, M., 2016. Introduction to Time Series Analysis and Forecasting. New Jersey: John Wiley & Sons, Inc
  15. Peter, J., Brockwell, Davis, R.A., 2002. Introduction to Time Series and Forecasting. New York, USA: Springer Science+Business Media, LLC
  16. Winarno, F., 2020. Covid-19 : Pelajaran Berharga dari Sebuah Pandemi. Jakarta: PT Gramedia Pustaka Utama

Last update:

No citation recorded.

Last update: 2024-02-22 19:17:30

No citation recorded.