skip to main content

Optimalisasi Parameter dengan Cross Validation dan Neural Back-propagation Pada Model Prediksi Pertumbuhan Industri Mikro dan Kecil

*Agus Perdana Windarto orcid scopus  -  STIKOM Tunas Bangsa, Pematangsiantar, Sumatera Utara, Indonesia
Sarjon Defit  -  Universitas Putra Indonesia YPTK, Padang, Indonesia, Indonesia
Anjar Wanto  -  STIKOM Tunas Bangsa, Pematangsiantar, Sumatera Utara, Indonesia

Citation Format:
Abstract

It is important for us to predict what will happen in future and to reduce uncertainty. Various analyzes are therefore necessary in order to optimize or improve the prediction results by several methods. The objective of this research is to analyze predictive results by optimizing the training and testing by means of cross validating parameters on the growth of micro and small-scale production in Indonesia through the exactness of the return-propagative method. The method of reproduction is used. These results are compared with results of backpropagation during training and testing without optimisation of the same architectural model. The dataset is based on the growth in production in micro and small businesses by province from the Central Statistical Agency(BPS). There were 34 records in which data from 2015-2019 for growth of production were collected. The results with optimisation have surpassed without optimisation the back propagation model by looking at RMSE, in which the best RMSE in the 3-2-1 architectural model was obtained and the side type is mixed sampling. The obtained RMSE value is 0.1526, or a difference between the best background architectural model, 3-2-1 and 0.0034. (0.157). The results of this model were 94 percent.

Note: This article has supplementary file(s).

Fulltext View|Download |  common.other
Plagiat artikel
Subject
Type Other
  Download (2MB)    Indexing metadata
 Research Instrument
CTA Agreement
Subject
Type Research Instrument
  Download (539KB)    Indexing metadata
Keywords: Optimization; Industrial production growth; Back-propagation; Cross validation; Optimize Parameters.

Article Metrics:

Article Info
Section: Research Articles
Language : EN
Statistics:
Share:
  1. Budiharjo, Soemartono, T., Windarto, A.P., & Herawan, T., 2018a. Predicting school participation in Indonesia using Back-Propagation Algorithm Model. International Journal of Control and Automation, 11(11), 57–68
  2. Budiharjo, Soemartono, T., Windarto, A.P., & Herawan, T., 2018b. Predicting tuition fee payment problem using backpropagation neural network model. International Journal of Advanced Science and Technology, 120, 85–96. https://doi.org/10.14257/ijast.2018.120.07
  3. Febriadi, B., Zamzami, Z., Yunefri, Y.& Wanto, A., 2018. Bipolar function in backpropagation algorithm in predicting Indonesia’s coal exports by major destination countries. IOP Conference Series: Materials Science and Engineering, 420(1). https://doi.org/10.1088/1757-899X/420/1/012087
  4. Indrayati Sijabat, P., Yuhandri, Y., Widi Nurcahyo, G., & Sindar, A., 2020. Algoritma Backpropagation prediksi harga komoditi terhadap karakteristik konsumen produk kopi lokal nasional. Digital Zone: Jurnal Teknologi Informasi Dan Komunikasi, 11(1), 96–107. https://doi.org/10.31849/digitalzone.v11i1.3880
  5. Kurniawan, E., Wibawanto, H., & Widodo, D.A., 2019. Implementasi metode backpropogation dengan inisialisasi bobot Nguyen Widrow untuk peramalan harga saham. Jurnal Teknologi Informasi Dan Ilmu Komputer, 6(1), 49. https://doi.org/10.25126/jtiik.201961904
  6. Lesnussa, Y.A., Mustamu, C. G., Kondo Lembang, F., & Talakua, M.W., 2018. Application of backpropagation neural networks in predicting rainfall data in Ambon City. International Journal of Artificial Intelligence Research, 2(2). https://doi.org/10.29099/ijair.v2i2.59
  7. Ma’ruf, A., & Wihastuti, L., 2008. Pertumbuhan Ekonomi Indonesia: Determinan dan Prospeknya. Jurnal Ekonomi & Studi Pembangunan, 9(1), 44–55. https://doi.org/10.18196/jesp.9.1.1526
  8. Nikentari, N., Kurniawan, H., Ritha, N., Kurniawan, D., Maritim, U., & Ali, R., 2018. Particle swarm optimization untuk prediksi pasang surut air optimization of backpropagation artificial neural network with particle swarm optimization to predict tide level. Jurnal Teknologi Informasi Dan Ilmu Komputer, 5(5), 605–612. https://doi.org/10.25126/jtiik2018551055
  9. Pambudi, E.W., & Miyasto., 2013. Analisis Pertumbuhan ekonomi dan faktor-faktor yang mempengaruhi (Kabupaten/Kota di Provinsi Jawa Tengah. Diponegoro Journal Of Economics, 2(2), 1–11
  10. Prasatya, A., Siregar, R.R.A., & Arianto, R., 2020. Penerapan Metode K-Means dan C4.5 Untuk prediksi penderita diabetes. Petir, 13(1), 86–100. https://doi.org/10.33322/petir.v13i1.925
  11. Wanto, A., 2018. Optimasi Prediksi dengan Algoritma Backpropagation dan Conjugate Gradient Beale-Powell Restarts. Jurnal Nasional Teknologi Dan Sistem Informasi, 3(3), 370–380. https://doi.org/10.25077/teknosi.v3i3.2017.370-380
  12. Windarto, A.P., Lubis, M.R., & Solikhun, S., 2018. Implementasi JST pada prediksi total laba rugi komprehensif bank umum dan konvensional dengan backpropagation. Jurnal Teknologi Informasi dan Ilmu Komputer, 5(4), 411. https://doi.org/10.25126/jtiik.201854767
  13. Windarto, A.P., Na, J., & Wanto, A., 2020. Bagian 2 : Model Arsitektur Neural Network dengan Kombinasi K- Medoids dan Backpropagation pada kasus Pandemi COVID-19 di Indonesia. 4, 1175–1180. https://doi.org/10.30865/mib.v4i4.2505

Last update:

No citation recorded.

Last update: 2021-09-19 09:01:28

No citation recorded.