BibTex Citation Data :
@article{JSINBIS50136, author = {Dody Sumantiawan and Jatmiko Suseno and Wahyul Syafei}, title = {Sentiment Analysis of Customer Reviews Using Support Vector Machine and Smote-Tomek Links For Identify Customer Satisfaction}, journal = {Jurnal Sistem Informasi Bisnis}, volume = {13}, number = {1}, year = {2023}, keywords = {Sentiment Analysis, Classification, Support Vector Machine, SMOTE, Tomek Links}, abstract = { Shopping activities in the online market, especially fashion trends, continue to increase with all the promo efforts offered. One of the considerations for buying products on the online market is to read reviews. Each consumer review shows the level of interest in the product. The number of negative reviews and the emergence of many varied reviews pose a problem in categorizing reviews. Sentiment analysis is a way of looking at the polarity of reviews to classify positive and negative reviews. The Support Vector Machine method and the combination of the Synthetic Minority Oversampling Technique (SMOTE) with Tomek Links are applied in this study. Classification using the Support Vector Machine method and the combination of the Synthetic Minority Oversampling Technique (SMOTE) with Tomek Links showed better results with an Accuracy of 0.92, Precision of 0.89, Recall of 0.89, and F1-score of 0.89 than without the combination of the Synthetic Minority oversampling Technique (SMOTE) with Tomek Links with an Accuracy of 0.68, Precision of 0.55, Recall of 0.99, and an F1-score of 0.71. }, issn = {2502-2377}, pages = {1--9} doi = {10.21456/vol13iss1pp1-9}, url = {https://ejournal.undip.ac.id/index.php/jsinbis/article/view/50136} }
Refworks Citation Data :
Shopping activities in the online market, especially fashion trends, continue to increase with all the promo efforts offered. One of the considerations for buying products on the online market is to read reviews. Each consumer review shows the level of interest in the product. The number of negative reviews and the emergence of many varied reviews pose a problem in categorizing reviews. Sentiment analysis is a way of looking at the polarity of reviews to classify positive and negative reviews. The Support Vector Machine method and the combination of the Synthetic Minority Oversampling Technique (SMOTE) with Tomek Links are applied in this study. Classification using the Support Vector Machine method and the combination of the Synthetic Minority Oversampling Technique (SMOTE) with Tomek Links showed better results with an Accuracy of 0.92, Precision of 0.89, Recall of 0.89, and F1-score of 0.89 than without the combination of the Synthetic Minority oversampling Technique (SMOTE) with Tomek Links with an Accuracy of 0.68, Precision of 0.55, Recall of 0.99, and an F1-score of 0.71.
Article Metrics:
Last update:
Public Sentiment Analysis of Telkom University: A Comparative Study of SVM and Decision Tree Models
Last update: 2024-11-20 06:01:25
Authors who submit the manuscripts to Journal JSINBIS must understand and agree that if the manuscript is accepted for publication, the copyright of the article belongs to JSINBIS and Diponegoro University as the journal publisher.
Copyright includes the exclusive right to reproduce and provide articles in all forms and media, including reprints, photographs, microfilm and any other similar reproductions, as well as translations. The author reserves the rights to the following:
JSINBIS and Diponegoro University and the Editors make every effort to ensure that no false or misleading data, opinions or statements are published in this journal. The content of articles published in JSINBIS is the sole and exclusive responsibility of the respective authors.
Copyright transfer agreement can be found here: [Copyright transfer agreement in doc] and [Copyright transfer agreement in pdf].
JSINBIS (Jurnal Sistem Informasi Bisnis) is published by the Magister of Information Systems, Post Graduate School Diponegoro University. It has e-ISSN: 2502-2377 dan p-ISSN: 2088-3587 . This is a National Journal accredited SINTA 2 by RISTEK DIKTI No. 48a/KPT/2017.
Journal JSINBIS which can be accessed online by http://ejournal.undip.ac.id/index.php/jsinbis is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats