skip to main content

Prediction Analysis of Sleep Disorders Using Machine Learning-Based Techniques

Mega Setiawati  -  Universitas Mercu Buana, Indonesia
Denise Aldianto  -  Universitas Mercu Buana, Indonesia
*Sulis Sandiwarno orcid  -  Universitas Mercu Buana, Indonesia
Open Access Copyright (c) 2025 Jurnal Sistem Informasi Bisnis

Citation Format:
Abstract

Sleep is crucial indicator for an individual. Poor sleep quality has serious implication for health. This condition is often triggered by high work pressure and imbalance between work and rest time. While previous research with similar topic has been conducted, it has not comprehensively elucidated the key factors influencing sleep disorders. Therefore, this study conducts more in-depth analysis of factors contributing to sleep disorders including; gender, age, occupation, sleep duration, quality of sleep, physical activity level, stress level, BMI, heart rate, and daily steps. Subsequently, we employ Machine Learning (ML) techniques to investigate further sleep disorders. The ML models include: Naïve Bayes (NB), Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Logistic Regression (LR), Convolutional Neural Network (CNN), dan Long Short-Term Memory Network (LSTM). The objective is to assess the effectiveness of ML model implementation based on information from data and the significance of specific factors in predicting sleep disturbances. The results of this study indicate that the combination of the LR model with Chi-Square achieved the highest average F1 score, which was 84.75%, in sleep disorder classification. The research comprises several stages: (1) Data collection, (2) Pre-processing of the collected data, and (3) Training models capable of processing data for evaluation to understand the contribution of indicators to sleep disorder predictions. The findings of this study provide insights into the effectiveness of the constructed models in predicting sleep disorders

Fulltext View|Download
Keywords: Prediction; Sleep Disorder; Machine Learning; Occupation.

Article Metrics:

  1. rysdian, C., 2023. Klasifikasi Ulasan Fasilitas Publik menggunakan Metode Naïve Bayes dengan Seleksi Fitur Chi-Square. JISKA (Jurnal Informatika Sunan Kalijaga), 8(2), 112–124. https://doi.org/10.14421/jiska.2023.8.2.112-124
  2. Pitaloka, E., Bagus Agung Hartanto, T., & Sandiwarno, S., 2023. Penerapan Machine Learning untuk Prediksi Bencana Banjir. In Jurnal Sistem Informasi Bisnis
  3. Prayoga Permana, A., Chamidy, T., & Crysdian, C., 2023a. Klasifikasi Ulasan Fasilitas Publik menggunakan Metode Naïve Bayes dengan Seleksi Fitur Chi-Square. In Jurnal Informatika Sunan Kalijaga) (Vol. 8, Issue 2). Mei
  4. Qiudandra, E., & Akram, R., 2022. Sistem Pakar Diagnosa Penyakit Osteoarthritis dengan menggunakan Metode K-Nearest Neighbor. Methotika, 2(2). Retrieved from http://ojs.fikom-methodist.net/index.php/METHOTIKA
  5. Rahayu, S., Nugroho, A., Dwika Putra, E., Purba, M., Setiawan, H., & Sulis Sandiwarno, 2023. Comparison of HSV, LAB and YCrCb Color Feature Extraction Results in the SVM Algorithm for Bird Species Classification. JSAI (Journal Scientific and Applied Informatics), 6(3), 451–456. https://doi.org/10.36085/jsai.v6i3.5920
  6. Revaldo, A., Yupianti, Y., & Beti, I. Y., 2023. Sistem Pakar Diagnosa Penyakit Gangguan Tidur dengan Metode Forward Chaining Berbasis Web (Studi Kasus : UPTD Puskesmas Telaga Dewa Kota Bengkulu). Jurnal Media Infotama, 19(1), 44–51. https://doi.org/10.37676/jmi.v19i1.3314
  7. Rochmawati, N., Hidayati, H. B., Yamasari, Y., Tjahyaningtijas, H. P. A., Yustanti, W., & Prihanto, A., 2021. Analisa Learning Rate dan Batch Size pada Klasifikasi Covid Menggunakan Deep Learning dengan Optimizer Adam. Journal of Information Engineering and Educational Technology, 5(2), 44–48. https://doi.org/10.26740/jieet.v5n2.p44-48
  8. Sandiwarno, S., Niu, Z., & Nyamawe, A. S., 2023. A Novel Hybrid Machine Learning Model for Analyzing E-Learning Users’ Satisfaction. International Journal of Human-Computer Interaction. https://doi.org/10.1080/10447318.2023.2209986
  9. Schmidt, L. I., Steenbock, L. M., & Sieverding, M., 2023. Improving Sleep Among Teachers: an Implementation-Intention Intervention. International Journal of Behavioral Medicine, 30(1), 49–61. https://doi.org/10.1007/s12529-022-10069-7
  10. Tineges, R., 2021. Wajib tahu, 3 tipe algoritma machine learning. Retrieved from https://dqlab.id/3-tipe-algoritma-machine-learning
  11. Tri Putra, B., Yulianingsih, E., & Bina Darma, U. (n.d.). Analisis Tingkat Akurasi Prediksi Gejala COVID-19 dengan menggunakan Metode Logistic Regression dan Support Vector Machine. Retrieved from http://github.com/nshomron/covidpred
  12. Uddin, S., Haque, I., Lu, H., Moni, M. A., & Gide, E., 2022. Comparative Performance Analysis Of K-Nearest Neighbour (KNN) Algorithm and its Different Variants for Disease Prediction. Scientific Reports, 12(1), 6256. https://doi.org/10.1038/s41598-022-10358-x
  13. Wardhana, R. G., Wang, G., & Sibuea, F., 2023. Penerapan Machine Learning dalam Prediksi Tingkat Kasus Penyakit di Indonesia. Journal of Information System Management (JOISM), 5(1), 40–45. https://doi.org/10.24076/joism.2023v5i1.1136

Last update:

No citation recorded.

Last update: 2025-03-10 19:43:40

No citation recorded.