skip to main content

Comparative Analysis of Taper and Taperless Blade Design for Ocean Wind Turbines in Ciheras Coastline, West Java

*Madi Madi  -  Energy System Engineering, Institut Teknologi Sumatera, Indonesia
Tuswan Tuswan scopus  -  Department of Naval Architecture, Faculty of Marine Technology, Institut Teknologi Sepuluh Nopember, Indonesia
Ilham Dwi Arirohman  -  Energy System Engineering, Institut Teknologi Sumatera, Indonesia
Abdi Ismail scopus  -  Department of Naval Architecture, Faculty of Marine Technology, Institut Teknologi Sepuluh Nopember, Indonesia
Open Access Copyright (c) 2021 Kapal: Jurnal Ilmu Pengetahuan dan Teknologi Kelautan under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

The blade is the most critical part of turbine design because it is used to convert kinetic to mechanical energy. In general, the blade types used for ocean wind turbines are taper and taperless blades, like those operated at Ciheras Coastline. Previous research has been analyzed the type of airfoil used in designing taper blades for ocean wind turbines using NACA 4412, which was selected as the optimal foil configuration at sea wind speeds of 12 m/s. In this study, the comparison of taper and taperless blade designs using NACA 4412 at a wind speed of 12 m/s is analyzed. The comparative study with previous research has been carried out and resulted in the same graphical patterns and performance results. In this study, the focus is on investigating the performance coefficient of power, mechanical power, and electrical power. The final result shows that taper blade designs are highly recommended for use in ocean wind turbines compared to taperless blades. In general, the performance produced by taper blades is more significant than taperless blades at relatively high wind speeds. The maximum performance coefficient of power, mechanical power, and electrical power generated by the taper blades in sequent are 0.47, 1535 watts, and 786 watts, while the taperless blades have 0.44, 1437 watts, and 736 watts.

Fulltext View|Download
Keywords: Taper Blade; Taperless Blade; Ocean Wind Turbine; Ciheras Coastline; NACA 4412

Article Metrics:

  1. Madi, M. E. N. Sasono, Y. S. Hadiwidodo and S. H. Sujiatanti, "Application of savonius turbine behind the propeller as energy source of fishing vessel in Indonesia,” IOP Conf. Series Materials Science and Engineering, vol. 588, pp. 1-10, 2019. doi: 10.1088/1757-899X/588/1/012046
  2. M. J. Khan, G. Bhuyan, M. T. Iqbal and J. E. Quaicoe, “Hydrokinetic energy conversion systems and assesment of horizontal and vertical axis turbine for river and tidal aplications : A technology status review,” Applied Energy, vol. 86, pp. 1823-1835, 2009. doi: 10.1016/j.apenergy.2009.02.017
  3. Md. J. Alam and M. T. Iqbal, “A low cut-in speed marine current turbine,” Journal of Ocean Technology, vol 5, pp. 49-62, 2010
  4. I. N. Zahrah, “Pengenalan teknologi pemanfaatan energi angin,” Bahan Materi Pembelajaran, PT. Lentera Angin Nusantara, Indonesia, 2014
  5. J. Wata, M. Faizal, B. Talu, L. Vanawalu, P. Sotia and M. R. Ahmed, “Studies on a low Reynolds number airfoil for small wind turbine applications,” Science China Technological Sciences, vol. 54, no. 7, pp. 1684–1688, 2011. doi: 10.1007/s11431-011-4411-3
  6. L. Qiao, S. Wei, R. Gu, X. Quan, and Y. Yang, “The investigation of the airfoil for the small wind turbine based on the seagull airfoil,” in Asia-Pacific Power and Energy Engineering Conference (APPEEC), 2011. doi: 10.1109/APPEEC.2011.5748731
  7. S. M. Habali and I.A. Saleh, “Local design, testing and manufacturing of small mixed airfoil wind turbine blades of glassfiber reinforced plastics: part I: design ofthe blade and root,” Energy Conversion and Management, vol. 41, no. 3, pp. 249–280, 2000. doi: 10.1016/S0196-8904(99)00103-X
  8. S. M. Habali and I.A. Saleh, “Local design, testing and manufacturing of small mixed airfoil wind turbine blades of glassfiber reinforced plastics: part II: manufacturing of the blade and rotor,” Energy Conversion and Management, vol. 41, no. 3, pp. 281–298, 2000. doi: 10.1016/S0196-8904(99)00104-1
  9. K. Ameku, B. M. Nagai and J. N. Roy, “Design of a 3 kW windturbine generator with thin airfoil blades,” Experimental Thermal and Fluid Science, vol. 32, no. 8, pp. 1723–1730, 2008. doi: 10.1016/j.expthermflusci.2008.06.008
  10. P. Giguere and M. S. Selig, “Low Reynolds number airfoils for small horizontal axis wind turbines,” Wind Engineering, vol. 21, no. 6, pp. 367–380, 1997
  11. R. K. Singh, M. R. Ahmed, M. A. Zullah and Y. H. Lee, “Design of a low Reynolds numberairfoil for small horizontal axis wind turbines,” Renewable Energy, vol. 42, pp. 66–76, 2012. doi: 10.1016/j.renene.2011.09.014
  12. Y. Nishizawa, H. Tokuyama, Y. Nakajo and I. Ushiyama, “Yaw behavior of horizontal-axis small wind turbines in an urban area,” Wind Engineering, vol. 33, no. 1, pp. 19–30, 2009. doi: 10.1260/0309-524X.33.1.19
  13. L. Mishnaevsky Jr, P. Freere, R. Sinha, P. Acharya, R. Shrestha and P. Manandhar, “Small wind turbines with timber blades for developing countries: materials choice, development, installation and experiences,” Renewable Energy, vol. 36, no. 8, pp. 2128–2138, 2011. doi: 10.1016/j.renene.2011.01.034
  14. Q. Song and W. David Lubitz, “Design and testing of a new small wind turbine blade,” Journal of Solar Energy Engineering, vol. 136, no. 3, 2014. doi: 10.1115/1.4026464
  15. Hasan, Md. Mehedi, A. El-Shahat and M. Rahman, “Design Studies and Aerodynamic Performance Analysis of Small Scale Horizontal Axis Wind Turbine Blade for Nano-Grid Applications,” Journal of Automation and Systems Engineering, vol. 11, pp. 11-26, 2017
  16. M. H. Lee, Y. C. Shiah and C. J. Bai, “Experiments and numerical simulations of the rotor-blade performance for a small-scale horizontal axis wind turbine,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 149, pp. 17–29, 2016. doi: 10.1016/j.jweia.2015.12.002
  17. F. Watanabe, T. Takahashi, H. Tokuyama, Y. Nishizawa and I. Ushiyama, “Modelling passive yawing motion of horizontal axis small wind turbine: derivation of new simplified equation for maximum yaw rate,” Wind Engineering, vol. 36, no. 4, pp. 433–441, 2012. doi: 10.1260/0309-524X.36.4.433
  18. C. Mayer, M. E. Bechly, M. Hampsey, D. H. Wood, “The starting behaviour of a smallhorizontal-axis wind turbine,” Renewable Energy, vol. 22, pp. 411–417, 2001. doi: 10.1016/S0960-1481(00)00066-5
  19. J. Yao, W. Yuan, J. Wang, J. Xie, H. Zhou, M. Peng, and Y. Sun, “Numerical simulation of aerodynamic performance for two dimensional wind turbine airfoils,” Procedia Engineering, vol. 31, pp. 80–86, 2012. doi: 10.1016/j.proeng.2012.01.994
  20. P. A. C. Rocha, H. H. B. Rocha, F. O. M. Carneiro, M. E. Vieira da Silva and A. V. Bueno, “k–ω SST (shear stress transport) turbulence model calibration: A case study on a small scale horizontal axis wind turbine,” Energy, vol. 65, pp. 412–418, 2014. doi: 10.1016/j.energy.2013.11.050
  21. A. El-Shahat, M. Hasan and A. Y. Abdelaziz, “Micro-Small-Scale Horizontal Axis Wind Turbine Design and Performance Analysis for Micro-Grids Applications,” Smart Microgrids, pp. 65–117, 2019. doi: 10.1007/978-3-030-02656-1_6
  22. Madi, “Study of Horizontal Axis Wind Turbine Design with Different Airfoil Designs on Taper Blades for Sea Wind Power Plants at Ciheras Beach, PT. Lentera Angin Nusantara, (in Indonesian)” Job Training Report, Institut Teknologi Sepuluh Nopember, Indonesia, 2016
  23. A. Effendi, M. Novriyanti, A. Y. Dewi and A. M. N. Putra,”Analisis pengaruh jumlah blade terhadap putaran turbin pada pemanfaatan energi angin di pantai ujung batu muaro penjalinan,” Jurnal Teknik Elektro ITP, vol. 8, no.2, pp. 134-138, 2019
  24. A. Bachtiar and W. Hayyatul, “Analisis potensi pembangkit listrik tenaga angin PT. Lentera Angin Nusantara (LAN) Ciheras,” Jurnal Teknik Elektro ITP, vol. 7, no.1, pp. 35-45, 2018
  25. I. N. Zahrah, “Dasar-dasar perancangan bilah,” Bahan Materi Pembelajaran, PT.Lentera Angin Nusantara, Indonesia, 2014

Last update:

  1. Renewable Power for Sustainable Growth

    S. A. H. Roslan, N. Umar, Z. A. Rasid, A. K. Arifin. Lecture Notes in Electrical Engineering, 1086 , 2024. doi: 10.1007/978-981-99-6749-0_13

Last update: 2024-03-27 10:25:31

No citation recorded.