Interaction Studies Between Cyclic Peptide ADT-C3 (Ac-CADTPC-NH2) with E-Cadherin Protein using the Molecular Docking Method Simulated on 120ns

*Parsaoran Siahaan -  Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University Jl. Prof. Soedarto, SH., Tembalang, Semarang, Indonesia
Vivitri Dewi Prasasty -  Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Indonesia
Atiatul Manna -  Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University Jl. Prof. Soedarto, SH., Tembalang, Semarang, Indonesia
Dwi Hudiyanti -  Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University Jl. Prof. Soedarto, SH., Tembalang, Semarang, Indonesia
Received: 24 Apr 2018; Published: 30 Apr 2018.
Open Access Copyright 2018 Jurnal Kimia Sains dan Aplikasi

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Citation Format:
Article Info
Section: Research Articles
Language: EN
Full Text:
Statistics: 272 245
The treatment of diseases that attack the brain is very difficult, because the delivery of drug molecules to the brain is often hindered by the blood-brain barrier (BBB). So that the drug delivery is not right on the target cell. Thus, was developed a method in modulation of intercellular junctions using ADTC3 cadherin peptide, Where the cadherin peptide is derived from the cadherin sequence itself. The method used in this research is molecular dynamics (DM) and molecular docking. In this study have been evaluated some peptide conformation in modulating intercellular junction. The results show that cyclic peptide ADT-C3 (Ac-CADTPC-NH2) was conducted DM for 120 ns (120000 ps), which has considerable activity in modulating intercellular junctions with binding energies of -33.10 kJ.mol-1 and Ki of 1.58 μM at the 79187 ps conformation. The binding site on residues Asp1, Trp2, Ile4, Lys25, Ser26, Asn27, Met92 in the adhesion arm-acceptor pocket region.
modulation intercellular junction; E-Cadherin; ADTC3 peptide; Molecular Dynamics; Molecular Docking

Article Metrics:

  1. Ahmed Alaofi, Elinaz Farokhi, Vivitri D. Prasasty, Asokan Anbanandam, Krzysztof Kuczera and Teruna J. Siahaan, Probing the interaction between cHAVc3 peptide and the EC1 domain of E-cadherin using NMR and molecular dynamics simulations, Journal of Biomolecular Structure and Dynamics, 35, 1, (2017) 92-104
  2. Anna Lisa Iorio, Martina da Ros, Ornella Fantappiè, Maurizio Lucchesi, Ludovica Facchini, Alessia Stival, Sabrina Becciani, Milena Guidi, Claudio Favre, Maurizio de Martino, Lorenzo Genitori and Iacopo Sardi, Blood-Brain Barrier and Breast Cancer Resistance Protein: A Limit to the Therapy of CNS Tumors and Neurodegenerative Diseases, Anti-Cancer Agents in Medicinal Chemistry, 16, 7, (2016) 810-815
  3. M. S. Balda and K. Matter, Tight junctions, Journal of Cell Science, 111, 5, (1998) 541-547
  4. Reinhard Gabathuler, Approaches to transport therapeutic drugs across the blood–brain barrier to treat brain diseases, Neurobiology of Disease, 37, 1, (2010) 48-57
  5. Marlyn D. Laksitorini, Paul K. Kiptoo, Ngoc H. On, James A. Thliveris, Donald W. Miller and Teruna J. Siahaan, Modulation of Intercellular Junctions by Cyclic-ADT Peptides as a Method to Reversibly Increase Blood–Brain Barrier Permeability, Journal of Pharmaceutical Sciences, 104, 3, (2015) 1065-1075
  6. Shinji Hirano and Masatoshi Takeichi, Cadherins in Brain Morphogenesis and Wiring, Physiological Reviews, 92, 2, (2012) 597-634
  7. Natalie K. Lee, Ka Wai Fok, Amanda White, Nicole H. Wilson, Conor J. O’Leary, Hayley L. Cox, Magdalene Michael, Alpha S. Yap and Helen M. Cooper, Neogenin recruitment of the WAVE regulatory complex maintains adherens junction stability and tension, Nature Communications, 7, (2016) 11082
  8. Ernawati Sinaga, Seetharama D. S. Jois, Mike Avery, Irwan Makagiansar, Usman S. F. Tambunan and Teruna J. Siahaan, Modulasi Junction Antar Sel Menggunakan Peptida Kadherin Upaya Meningkatkan Penghantaran Obat, Makara Journal of Science, 8, 1, (2004) 25-34
  9. Nastiti Nastiti and Parsaoran Siahaan, Pengaruh Berat Molekul Kitosan terhadap Efisiensi Enkapsulasi BSA (Bovine Serum Albumin) Menggunakan Agen Crosslink Na-TPP, Jurnal Kimia Sains dan Aplikasi, 18, 3, (2015) 104-109
  10. Bani Amanullah Prasojo and Parsaoran Siahaan, Pengaruh Berat Molekul Kitosan terhadap Efisiensi Enkapsulasi BSA (Bovine Serum Albumin) Menggunakan Agen Crosslink Asam Sitrat, Jurnal Kimia Sains dan Aplikasi, 18, 2, (2015) 62-66
  11. Marlyn D. Laksitorini, Design of Cyclic-ADT Peptides to Improve Drug Delivery to the Brain via Inhibition of E-Cadherin Interactions at the Adherens Junction, Pharmaceutical Chemistry, University of Kansas, Kansas
  12. Parsaoran Siahaan, Vivitri Dewi Prasasty, Bungaran David Simanjuntak, Suci Hildayani and Khairul Anam, Structural Stability of ADTC5 Peptide: Conformational Insights into Dynamics and Its Binding Mode, Journal of Tropical Life Science, 7, 2, (2017) 138-145
  13. Atiatul Manna, Marlyn Dian Laksitorini, Dwi Hudiyanti and Parsaoran Siahaan, Molecular Docking of Interaction between E-Cadherin Protein and Conformational Structure of Cyclic Peptide ADTC3 (Ac-CADTPC-NH2) Simulated on 20 ns, Jurnal Kimia Sains dan Aplikasi, 20, 1, (2017) 30-36
  14. Shweta Agarwal and Ranjana Mehrotra, An overview of Molecular Docking, JSM Chemistry, 4, 2, (2016) 1024-1027
  15. Imelda F. Saragih and Parsaoran Siahaan, Kitosan sebagai Bahan Dasar Drug Delivery: Studi Interaksi antara Segmen Dimer Kitosan dengan Dipeptida Ac-AD-NH2 dan Ac-PV-NH2 secara Komputasi AB-Initio, Jurnal Kimia Sains dan Aplikasi, 17, 2, (2014) 58-64
  16. R. Padmini, Razia Muthusamy, V. Roopavahini and S. Sai Aruna, Molecular Docking Studies of Allylsulfur Compounds from Allium sativum against EGFR Receptor, The International Journal of Current Research and Academic Review, special issue, 3, (2016) 207-218
  17. Miaoer Yu, Computational Modeling of Protein Dynamics with GROMACS and Java, Computer Science, San José State University, California
  18. Patel Sandeep, Alexander D. Mackerell Jr. and Charles L. Brooks, CHARMM fluctuating charge force field for proteins: II Protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model, Journal of Computational Chemistry, 25, 12, (2004) 1504-1514
  19. Lokesh Ravi and Kannabiran Krishnan, A Handbook on Protein-Ligand Docking Tool: AutoDock 4, Innovare Journal of Medical Sciences, 4, 3, (2016) 28-33
  20. Morris Garrett M., Goodsell David S., Halliday Robert S., Huey Ruth, Hart William E., Belew Richard K. and Olson Arthur J., Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function, Journal of Computational Chemistry, 19, 14, (1998) 1639-1662;2-B
  21. Ken A. Dill, Dominant forces in protein folding, Biochemistry, 29, 31, (1990) 7133-7155
  22. Leonardo Ferreira, Ricardo dos Santos, Glaucius Oliva and Adriano Andricopulo, Molecular Docking and Structure-Based Drug Design Strategies, Molecules, 20, 7, (2015) 13384
  23. Emilio Parisini, Jonathan M. G. Higgins, Jin-huan Liu, Michael B. Brenner and Jia-huai Wang, The Crystal Structure of Human E-cadherin Domains 1 and 2, and Comparison with other Cadherins in the Context of Adhesion Mechanism, Journal of Molecular Biology, 373, 2, (2007) 401-411
  24. P. Archana, N. Sathishkumar and N. Bharathi, In Silico Docking Analysis Of Curcumin - An Inhibitor For Obesity, International Journal of Pharma and Bio Sciences, 1, 4, (2010) 224-235
  25. Xavier Lucas, Antonio Bauza, Antonio Frontera and David Quinonero, A thorough anion-[small pi] interaction study in biomolecules: on the importance of cooperativity effects, Chemical Science, 7, 2, (2016) 1038-1050
  26. Asit K. Chandra and Th Zeegers-Huyskens, Theoretical Investigation of the Cooperativity in CH3CHO·2H2O, CH2FCHO·2H2O, and CH3CFO·2H2O Systems, Journal of Atomic, Molecular, and Optical Physics, 2012, (2012) 1-8