skip to main content

Bioethanol Production from Cassava Peel Treated with Sulfonated Carbon Catalyzed Hydrolysis

Department of Chemical Engineering, Lambung Mangkurat University, Indonesia

Received: 15 Jan 2021; Revised: 15 Feb 2021; Accepted: 17 Feb 2021; Published: 28 Feb 2021.
Open Access Copyright 2021 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract
A large amount of Cassava peel as biomass waste is generated by agricultural activities, and it led to a new pursuit to exploit the utilization of biomass waste. This research aimed to study the potential of Cassava peel as raw material for bioethanol production. This study was performed in 2 main processes, acid hydrolysis, and fermentation. The experiment was initiated by conducting acid hydrolysis (100°C and 60 min) on Cassava peel’s starch using sulfonated carbon catalyst palm oil empty fruit bunch (5%-w/v) to produce 13.53 g/L glucose. The glucose contained hydrolysates then continued to ferment at 30°C. The effect of fermentation time (h), pH, and shaking rate (rpm) of cassava peel’s starch fermentation using Saccharomyces cerevisiae was analyzed. The best result was found at pH 4.5 and 50 rpm for a 24 h reaction with 3.75 g/L of bioethanol concentration. This study revealed that Cassava peel is a promising feedstock for biofuel production.
Fulltext View|Download
Keywords: Cassava peel; Hydrolysis; Sulfonated palm oil empty bunch catalyst; Fermentation; Bioethanol
Funding: Lambung Mangkurat University

Article Metrics:

  1. Arijana Bušić, Nenad Marđetko, Semjon Kundas, Galina Morzak, Halina Belskaya, Mirela Ivančić Šantek, Draženka Komes, Srđan Novak, Božidar Šantek, Bioethanol Production from Renewable Raw Materials and Its Separation and Purification: A Review, Food Technol Biotechnol, 56, 3, (2018), 289-311 https://dx.doi.org/10.17113/ftb.56.03.18.5546
  2. Imelia Dewi, Laksmi Ambarsari, Akhiruddin Maddu, Utilization of Ecoenzyme Citrus reticulata in a microbial fuel cell as a new potential of renewable energy, Jurnal Kimia Sains dan Aplikasi, 23, 2, (2020), 61-67 https://doi.org/10.14710/jksa.23.2.61-67
  3. Kharisma Madda Ellyana, Kharisma Luthfiaratri Rahayu, Ratri Febriastuti, Abdul Haris, Cassava Skin Usage (Manihot esculenta L.) as Photocatalyst for Degradation of Methylene Blue in the River of Textile Industrial Zone, Jurnal Kimia Sains dan Aplikasi, 21, 4, (2018), 232-236 https://doi.org/10.14710/jksa.21.4.232-236
  4. Ansharullah Ansharullah, Nur Muhammad Abdillah Saenuddin, RH Fitri Faradilla, Asranuddin Asranudin, Asniar Asniar, Muhammad Nurdin, Production of Micro Crystalline Cellulose from Tapioca Solid Waste: Effect of Acid Concentration on its Physico-chemical Properties, Jurnal Kimia Sains dan Aplikasi, 23, 5, (2020), 147-151 https://doi.org/10.14710/jksa.23.5.147-151
  5. Tajuddin Bantacut, Fiona Arintika Ramadhani, Development of a Closed Production Process of Tapioca Industry, International Journal of Advanced Research (IJAR), 6, 10, (2018), 521-532 http://dx.doi.org/10.21474/IJAR01/7834
  6. Zawawi Daud, Halizah Awang, Angzzas Sari Mohd Kassim, Mohd Zainuri Mohd Hatta, Ashuvila Mohd Aripin, Comparison of Pineapple Leaf and Cassava Peel by Chemical Properties and Morphology Characterization, Advanced Materials Research, 974, (2014), 384-388 https://doi.org/10.4028/www.scientific.net/AMR.974.384
  7. Gabriel S. Aruwajoye, Y. Sewsynker-Sukai, E. B. Gueguim Kana, Valorisation of cassava peels through simultaneous saccharification and ethanol production: Effect of prehydrolysis time, kinetic assessment and preliminary scale up, Fuel, 278, (2020), 118351 https://doi.org/10.1016/j.fuel.2020.118351
  8. Hermansyah, Tounaly Xayasene, Nguyen Huu Tho, Miksusanti, Fatma, Almunadi T. Panagan, Bioethanol Production from Cassava (Manihot esculenta) Peel Using Yeast Isolated from Durian (Durio zhibetinus), Journal of Physics: Conference Series, 1095, (2018), 012016 https://doi.org/10.1088/1742-6596/1095/1/012016
  9. Ademola Adekunle, Valerie Orsat, Vijaya Raghavan, Lignocellulosic bioethanol: A review and design conceptualization study of production from cassava peels, Renewable and Sustainable Energy Reviews, 64, (2016), 518-530 https://doi.org/10.1016/j.rser.2016.06.064
  10. Joo Shun Tan, Pongsathon Phapugrangkul, Chee Keong Lee, Zee-Wei Lai, Mohamad Hafizi Abu Bakar, Paramasivam Murugan, Banana frond juice as novel fermentation substrate for bioethanol production by Saccharomyces cerevisiae, Biocatalysis and Agricultural Biotechnology, 21, (2019), 101293 https://doi.org/10.1016/j.bcab.2019.101293
  11. C. Manochio, B. R. Andrade, R. P. Rodriguez, B. S. Moraes, Ethanol from biomass: A comparative overview, Renewable and Sustainable Energy Reviews, 80, (2017), 743-755 https://doi.org/10.1016/j.rser.2017.05.063
  12. Haruki Ishizaki, Keiji Hasumi, Chapter 10 - Ethanol Production from Biomass, in: S. Tojo, T. Hirasawa (Eds.) Research Approaches to Sustainable Biomass Systems, Academic Press, Boston, 2014, https://doi.org/10.1016/B978-0-12-404609-2.00010-6
  13. Evan Michael Visser, Tiago Ferreira Leal, Maíra Nicolau de Almeida, Valéria Monteze Guimarães, Increased enzymatic hydrolysis of sugarcane bagasse from enzyme recycling, Biotechnology for Biofuels, 8, 1, (2015), 5 https://doi.org/10.1186/s13068-014-0185-8
  14. Samuel Kassaye, Kamal K. Pant, Sapna Jain, Hydrolysis of cellulosic bamboo biomass into reducing sugars via a combined alkaline solution and ionic liquid pretreament steps, Renewable Energy, 104, (2017), 177-184 https://doi.org/10.1016/j.renene.2016.12.033
  15. Yu-Loong Loow, Ta Yeong Wu, Jamaliah Md. Jahim, Abdul Wahab Mohammad, Wen Hui Teoh, Typical conversion of lignocellulosic biomass into reducing sugars using dilute acid hydrolysis and alkaline pretreatment, Cellulose, 23, 3, (2016), 1491-1520 https://doi.org/10.1007/s10570-016-0936-8
  16. Feng Shen, Richard L. Smith, Luyang Li, Lulu Yan, Xinhua Qi, Eco-friendly Method for Efficient Conversion of Cellulose into Levulinic Acid in Pure Water with Cellulase-Mimetic Solid Acid Catalyst, ACS Sustainable Chemistry & Engineering, 5, 3, (2017), 2421-2427 https://doi.org/10.1021/acssuschemeng.6b02765
  17. Cheng Heng Pang, Sanyasi Gaddipatti, Gregory Tucker, Edward Lester, Tao Wu, Relationship between thermal behaviour of lignocellulosic components and properties of biomass, Bioresource Technology, 172, (2014), 312-320 https://doi.org/10.1016/j.biortech.2014.09.042
  18. Anis Kristiani, Kiky Corneliasari Sembiring, Yosi Aristiawan, Fauzan Aulia, Luthfiana Nurul Hidayati, Haznan Abimanyu, Catalytic Performance of Sulfonated Carbon Catalysts for Hydrolysis of Palm Oil Empty Fruit Bunch, Jurnal Kimia Sains dan Aplikasi, 23, 6, (2020), 209-215 https://doi.org/10.14710/jksa.23.6.209-215
  19. Isalmi Aziz, Yessinta Kurnianti, Nanda Saridewi, Lisa Adhani, Wahyu Permata, Utilization of Coconut Shell as Cr2O3 Catalyst Support for Catalytic Cracking of Jatropha Oil into Biofuel, Jurnal Kimia Sains dan Aplikasi, 23, 2, (2020), 39-45 https://doi.org/10.14710/jksa.23.2.39-45
  20. Nur Hidayati, Rahmah Puspita Sari, Herry Purnama, Catalysis of glycerol acetylation on solid acid catalyst: a review, Jurnal Kimia Sains dan Aplikasi, 23, 12, (2020), 414-423 https://doi.org/10.14710/jksa.23.12.414-423
  21. Masaaki Kitano, Daizo Yamaguchi, Satoshi Suganuma, Kiyotaka Nakajima, Hideki Kato, Shigenobu Hayashi, Michikazu Hara, Adsorption-Enhanced Hydrolysis of β-1,4-Glucan on Graphene-Based Amorphous Carbon Bearing SO3H, COOH, and OH Groups, Langmuir, 25, 9, (2009), 5068-5075 https://doi.org/10.1021/la8040506
  22. Mohammad Taherzadeh, Keikhosro Karimi, Enzyme-based hydrolysis processes for ethanol from lignocellulosic materials: a review. BioResources, BioResources, 2, 4, (2007), 707-738
  23. Athanasia Amanda Septevani, Annisa Rifathin, Ajeng Arum Sari, Yulianti Sampora, Gita Novi Ariani, Sudiyarmanto, Dewi Sondari, Oil palm empty fruit bunch-based nanocellulose as a super-adsorbent for water remediation, Carbohydrate Polymers, 229, (2020), 115433 https://doi.org/10.1016/j.carbpol.2019.115433
  24. Mei Ling Foo, Ca Rol Tan, Pei Dee Lim, Chien Wei Ooi, Khang Wei Tan, Irene Mei Leng Chew, Surface-modified nanocrystalline cellulose from oil palm empty fruit bunch for effective binding of curcumin, International Journal of Biological Macromolecules, 138, (2019), 1064-1071 https://doi.org/10.1016/j.ijbiomac.2019.07.035
  25. Heung-Min Yoo, Se-Won Park, Yong-Chil Seo, Ki-Heon Kim, Applicability assessment of empty fruit bunches from palm oil mills for use as bio-solid refuse fuels, Journal of Environmental Management, 234, (2019), 1-7 https://doi.org/10.1016/j.jenvman.2018.11.035
  26. Naeemah A. Ibrahim, Umer Rashid, Yun Hin Taufiq-Yap, Thomas Choong Shean Yaw, Ismayadi Ismail, Synthesis of carbonaceous solid acid magnetic catalyst from empty fruit bunch for esterification of palm fatty acid distillate (PFAD), Energy Conversion and Management, 195, (2019), 480-491 https://doi.org/10.1016/j.enconman.2019.05.022
  27. Indika Thushari, Sandhya Babel, Sustainable utilization of waste palm oil and sulfonated carbon catalyst derived from coconut meal residue for biodiesel production, Bioresource Technology, 248, (2018), 199-203 https://doi.org/10.1016/j.biortech.2017.06.106
  28. Iryanti Fatyasari Nata, Chairul Irawan, Primata Mardina, Cheng-Kang Lee, Carbon-based strong solid acid for cornstarch hydrolysis, Journal of Solid State Chemistry, 230, (2015), 163-168 https://doi.org/10.1016/j.jssc.2015.07.005
  29. Shukun Yu, Carl Erik Olsen, Jan Marcussen, Methods for the assay of 1,5-anhydro-d-fructose and α-1,4-glucan lyase, Carbohydrate Research, 305, 1, (1997), 73-82 https://doi.org/10.1016/S0008-6215(97)00226-7
  30. Richard Bayitse, Xiaoru Hou, Anne-Belinda Bjerre, Firibu Kwasi Saalia, Optimisation of enzymatic hydrolysis of cassava peel to produce fermentable sugars, AMB Express, 5, 1, (2015), 60 https://doi.org/10.1186/s13568-015-0146-z
  31. Luciana Reis Fontinelle Souto, Márcio Caliari, Manoel Soares Soares Júnior, Fernanda Assumpção Fiorda, Marina Costa Garcia, Utilization of residue from cassava starch processing for production of fermentable sugar by enzymatic hydrolysis, Food Science and Technology, 37, 1, (2017), 19-24 https://doi.org/10.1590/1678-457x.0023
  32. Makiko Nagamori, Toshitaka Funazukuri, Glucose production by hydrolysis of starch under hydrothermal conditions, Journal of Chemical Technology & Biotechnology, 79, 3, (2004), 229-233 https://doi.org/10.1002/jctb.976
  33. Albert L. Charles, Yung H. Chang, Wen C. Ko, Klanaroth Sriroth, Tzou C. Huang, Influence of Amylopectin Structure and Amylose Content on the Gelling Properties of Five Cultivars of Cassava Starches, Journal of Agricultural and Food Chemistry, 53, 7, (2005), 2717-2725 https://doi.org/10.1021/jf048376+
  34. Cristiane M. Schweinberger, Jorge O. Trierweiler, Luciane F. Trierweiler, A Simple Equation for Total Reducing Sugars (TRS) Estimation on Sweet Potato and Ethanol Yield Potential, Brazilian Journal of Chemical Engineering, 36, 1, (2019), 33-41 https://doi.org/10.1590/0104-6632.20190361s20170404
  35. Richard F. Tester, John Karkalas, Xin Qi, Starch—composition, fine structure and architecture, Journal of Cereal Science, 39, 2, (2004), 151-165 https://doi.org/10.1016/j.jcs.2003.12.001
  36. Catalina Fuentes, Daysi Perez-Rea, Björn Bergenståhl, Sergio Carballo, Malin Sjöö, Lars Nilsson, Physicochemical and structural properties of starch from five Andean crops grown in Bolivia, International Journal of Biological Macromolecules, 125, (2019), 829-838 https://doi.org/10.1016/j.ijbiomac.2018.12.120
  37. Iryanti Fatyasari Nata, Chairul Irawan, Meilana Dharma Putra, Cheng-Kang Lee, The green synthesis of a palm empty fruit bunch-derived sulfonated carbon acid catalyst and its performance for cassava peel starch hydrolysis, RSC Advances, 11, 12, (2021), 6449-6455 https://doi.org/10.1039/D1RA00019E
  38. Oi Lun Li, Ryuhei Ikura, Takahiro Ishizaki, Hydrolysis of cellulose to glucose over carbon catalysts sulfonated via a plasma process in dilute acids, Green Chemistry, 19, 20, (2017), 4774-4777 https://doi.org/10.1039/C7GC02143G
  39. Ayumu Onda, Takafumi Ochi, Kazumichi Yanagisawa, Selective hydrolysis of cellulose into glucose over solid acid catalysts, Green Chemistry, 10, 10, (2008), 1033-1037 https://doi.org/10.1039/B808471H
  40. M. Hemalatha, A. Brinda Lakshmi, Catalytic Hydrolysis of Fruit Waste Using Magnetic Carbon Acid Catalyst for Bioethanol Production, Waste and Biomass Valorization, 12, 2, (2021), 971-983 https://doi.org/10.1007/s12649-020-01019-z
  41. Sihan Li, Zhengrong Gu, Brady Evan Bjornson, Arthy Muthukumarappan, Biochar based solid acid catalyst hydrolyze biomass, Journal of Environmental Chemical Engineering, 1, 4, (2013), 1174-1181 https://doi.org/10.1016/j.jece.2013.09.004
  42. Michikazu Hara, Takemi Yoshida, Atsushi Takagaki, Tsuyoshi Takata, Junko N. Kondo, Shigenobu Hayashi, Kazunari Domen, A Carbon Material as a Strong Protonic Acid, Angewandte Chemie International Edition, 43, 22, (2004), 2955-2958 https://doi.org/10.1002/anie.200453947
  43. Masakazu Toda, Atsushi Takagaki, Mai Okamura, Junko N. Kondo, Shigenobu Hayashi, Kazunari Domen, Michikazu Hara, Biodiesel made with sugar catalyst, Nature, 438, 7065, (2005), 178-178 https://doi.org/10.1038/438178a
  44. Mai Okamura, Atsushi Takagaki, Masakazu Toda, Junko N. Kondo, Kazunari Domen, Takashi Tatsumi, Michikazu Hara, Shigenobu Hayashi, Acid-Catalyzed Reactions on Flexible Polycyclic Aromatic Carbon in Amorphous Carbon, Chemistry of Materials, 18, 13, (2006), 3039-3045 https://doi.org/10.1021/cm0605623
  45. Lei Hu, Zhen Wu, Jiaxing Xu, Shouyong Zhou, Guodong Tang, Efficient hydrolysis of cellulose over a magnetic lignin-derived solid acid catalyst in 1-butyl-3-methylimidazolium chloride, Korean Journal of Chemical Engineering, 33, 4, (2016), 1232-1238 https://doi.org/10.1007/s11814-015-0267-8
  46. Yi-Huang Chang, Ku-Shang Chang, Chien-Yu Chen, Chuan-Liang Hsu, Tsan-Chang Chang, Hung-Der Jang, Enhancement of the Efficiency of Bioethanol Production by Saccharomyces cerevisiae via Gradually Batch-Wise and Fed-Batch Increasing the Glucose Concentration, Fermentation, 4, 2, (2018), 45 https://doi.org/10.3390/fermentation4020045
  47. T. Roukas, Solid-state fermentation of carob pods for ethanol production, Applied Microbiology and Biotechnology, 41, 3, (1994), 296-301 https://doi.org/10.1007/BF00221222
  48. D. Y. Tsunatu, K. G. Atiku, T. T. Samuel, B. I. Hamidu, D. I. Dahutu, Production of Bioethanol from Rice Straw Using Yeast Extracts Peptone Dextrose, Nigerian Journal of Technology, 36, 1, (2017), 296-301
  49. Yan Lin, Wei Zhang, Chunjie Li, Kei Sakakibara, Shuzo Tanaka, Hainan Kong, Factors affecting ethanol fermentation using Saccharomyces cerevisiae BY4742, Biomass and Bioenergy, 47, (2012), 395-401 https://doi.org/10.1016/j.biombioe.2012.09.019
  50. M. E. van der Rest, A. H. Kamminga, A. Nakano, Y. Anraku, B. Poolman, W. N. Konings, The plasma membrane of Saccharomyces cerevisiae: structure, function, and biogenesis, Microbiological Reviews, 59, 2, (1995), 304-322 https://doi.org/10.1128/mmbr.59.2.304-322.1995
  51. Sunan Nuanpeng, Sudarat Thanonkeo, Mamoru Yamada, Pornthap Thanonkeo, Ethanol Production from Sweet Sorghum Juice at High Temperatures Using a Newly Isolated Thermotolerant Yeast Saccharomyces cerevisiae DBKKU Y-53, Energies, 9, 4, (2016), 253 https://doi.org/10.3390/en9040253
  52. Siti Hajar Mohd Azhar, Rahmath Abdulla, Siti Azmah Jambo, Hartinie Marbawi, Jualang Azlan Gansau, Ainol Azifa Mohd Faik, Kenneth Francis Rodrigues, Yeasts in sustainable bioethanol production: A review, Biochemistry and Biophysics Reports, 10, (2017), 52-61 https://doi.org/10.1016/j.bbrep.2017.03.003
  53. Sirajuddin, Bandi Soepratono, Edy Budiarso, Wiwin Suwinarti, Bioethanol production from cassava peel by ultrasonic assisted using hcl as catalyst, International Journal of Scientific and Technology Research, 8, 3, (2019), 146-148
  54. Jennifer T. Casabar, Yuwalee Unpaprom, Rameshprabu Ramaraj, Fermentation of pineapple fruit peel wastes for bioethanol production, Biomass Conversion and Biorefinery, 9, 4, (2019), 761-765 https://doi.org/10.1007/s13399-019-00436-y
  55. Naseeha A. Chohan, G. S. Aruwajoye, Y. Sewsynker-Sukai, E. B. Gueguim Kana, Valorisation of potato peel wastes for bioethanol production using simultaneous saccharification and fermentation: Process optimization and kinetic assessment, Renewable Energy, 146, (2020), 1031-1040 https://doi.org/10.1016/j.renene.2019.07.042

Last update:

  1. Cassava cultivation; current and potential use of agroindustrial co–products

    Pablo Andrés–Meza, Noé Aguilar–Rivera, Isaac Meneses–Márquez, José Luis Del Rosario–Arellano, Gloria Ivette Bolio–López, Otto Raúl Leyva–Ovalle. AIMS Environmental Science, 11 (2), 2024. doi: 10.3934/environsci.2024012
  2. Bioethanol production from agricultural residues as lignocellulosic biomass feedstock's waste valorization approach: A comprehensive review

    Mani Jayakumar, Gadissa Tokuma Gindaba, Kaleab Bizuneh Gebeyehu, Selvakumar Periyasamy, Abdisa Jabesa, Gurunathan Baskar, Beula Isabel John, Arivalagan Pugazhendhi. Science of The Total Environment, 879 , 2023. doi: 10.1016/j.scitotenv.2023.163158
  3. Hydrothermally treated corncob as solid acid catalyst for facile hydrolysis of starch from avocado seed

    Primata Mardina, Meilana Dharma Putra, Hesti Wijayanti, Iryanti Fatyasari Nata, Rinna Juwita, Annisa Putri Kinasih, Intan Gemilang Dewi Fortuna. Reaction Kinetics, Mechanisms and Catalysis, 136 (5), 2023. doi: 10.1007/s11144-023-02482-0

Last update: 2024-04-24 14:07:03

No citation recorded.