Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof. Soedarto, SH., Tembalang, Semarang, Indonesia
BibTex Citation Data :
@article{JKSA44385, author = {Arnelli Arnelli and Sri Guswini and Ahmad Suseno}, title = {Synthesis of Surfactant-Modified Activated Carbon (SMAC) Above Critical Micelle Concentration as Cr(VI) Ion Adsorbent}, journal = {Jurnal Kimia Sains dan Aplikasi}, volume = {25}, number = {5}, year = {2022}, keywords = {Activated carbon; SMAC; adsorption; metal ions}, abstract = { The synthesis of surfactant-modified activated carbon (SMAC) has been widely studied. However, no research has been conducted to study SMAC concentrations higher than the critical micellar concentration. Therefore, in this study, SMAC was synthesized using anionic and cationic surfactants above CMC (Critical Micelle Concentration) and compared with SMAC below CMC and coconut husk-based activated carbon. This study aimed to determine the surface profile of SMAC and the characteristics and mechanism of metal ion adsorption by SMAC. The selected metal ions were Cr(VI) cations and NH 4 + cations as a reference. SMAC was prepared by modifying coconut shell-based activated carbon with anionic surfactant SLS (Sodium Lauryl Sulfate) and cationic surfactant HDTMA-Br (Hexadecyl Trimethyl Ammonium Bromide). Modification of SMAC was performed by three different methods: (a) activated carbon was added gradually with SLS followed by HDTMA-Br, (b) activated carbon was added with HDTMA-Br followed by SLS, (c) activated carbon was mixed with SLS and HDTMA-Br simultaneously. All synthesized SMAC were characterized using FTIR, GSA (Gas Sorption Analyzer), and zeta potential. The FTIR analysis results showed that the synthesized SMAC comprised S=O and (CH 3 ) 3 N + groups derived from surfactants. GSA analysis revealed that SMAC has a surface area of 36.790 m 2 /g, and it was more stable than activated carbon according to the zeta potential result. In this study, the efficiency of SLS and HDTMA-Br in synthesizing SMAC was 99.98% and 95.85%, respectively. SMAC synthesis using method c resulted in Cr(VI) adsorption efficiency of 93.50% and NH 4 + adsorption efficiency of 87.37%. In comparison, SMAC below CMC has adsorption capacities of 93.41% for Cr(VI) and 85.05% for NH 4 + , respectively, whereas Cr(VI) adsorption efficiency by coconut shell-based activated carbon was 99.98%. }, issn = {2597-9914}, pages = {179--184} doi = {10.14710/jksa.25.5.179-184}, url = {https://ejournal.undip.ac.id/index.php/ksa/article/view/44385} }
Refworks Citation Data :
The synthesis of surfactant-modified activated carbon (SMAC) has been widely studied. However, no research has been conducted to study SMAC concentrations higher than the critical micellar concentration. Therefore, in this study, SMAC was synthesized using anionic and cationic surfactants above CMC (Critical Micelle Concentration) and compared with SMAC below CMC and coconut husk-based activated carbon. This study aimed to determine the surface profile of SMAC and the characteristics and mechanism of metal ion adsorption by SMAC. The selected metal ions were Cr(VI) cations and NH4+ cations as a reference. SMAC was prepared by modifying coconut shell-based activated carbon with anionic surfactant SLS (Sodium Lauryl Sulfate) and cationic surfactant HDTMA-Br (Hexadecyl Trimethyl Ammonium Bromide). Modification of SMAC was performed by three different methods: (a) activated carbon was added gradually with SLS followed by HDTMA-Br, (b) activated carbon was added with HDTMA-Br followed by SLS, (c) activated carbon was mixed with SLS and HDTMA-Br simultaneously. All synthesized SMAC were characterized using FTIR, GSA (Gas Sorption Analyzer), and zeta potential. The FTIR analysis results showed that the synthesized SMAC comprised S=O and (CH3)3N+ groups derived from surfactants. GSA analysis revealed that SMAC has a surface area of 36.790 m2/g, and it was more stable than activated carbon according to the zeta potential result. In this study, the efficiency of SLS and HDTMA-Br in synthesizing SMAC was 99.98% and 95.85%, respectively. SMAC synthesis using method c resulted in Cr(VI) adsorption efficiency of 93.50% and NH4+ adsorption efficiency of 87.37%. In comparison, SMAC below CMC has adsorption capacities of 93.41% for Cr(VI) and 85.05% for NH4+, respectively, whereas Cr(VI) adsorption efficiency by coconut shell-based activated carbon was 99.98%.
Article Metrics:
Last update:
Last update: 2024-12-26 22:12:29
As an article writer, the author has the right to use their articles for various purposes, including use by institutions that employ authors or institutions that provide funding for research. Author rights are granted without special permission.
Author who publishes a paper at JKSA has the broad right to use their work for teaching and scientific purposes without the need to ask permission, including: used for (i) teaching in the author's class or institution, (ii) presentation at meetings or conferences and distributing copies to participants ; (iii) training conducted by the author or author's institution; (iv) distribution to colleagues for research use; (v) use in the compilation of subsequent authors' works; (vi) inclusion in a thesis or dissertation; (vi) reuse of part of the article in another work (with citation); (vii) preparation of derivative works (with citation); (viii) voluntary posting on open websites operated by authors or author institutions for scientific purposes (follow the CC BY-SA License).
Authors and readers can copy and redistribute material in any media or format, and mix, modify, and build material for any purpose but they must provide appropriate credit (provide article citation or content), providing links to the license, and indicate if there are changes.
The authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Jurnal Kimia Sains dan Aplikasi (JKSA). Copyright encompasses rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms and any other similar reproductions, as well as translations.
Reproduce any part of this journal, its storage in the database or its transmission by all forms or media is permitted does not need for written permission from JKSA. However, it should be cited as an honor in academic manners
JKSA and the Chemistry Department of Diponegoro University and the Editor make every effort to ensure that there are no data, opinions, or false or misleading statements published in JKSA. However, the content of the article is the sole and exclusive responsibility of each author.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form - Indonesian] [Copyright Transfer Form - English]. The copyright form should be signed originally and send to the Editor in the form of printed letters, scanned documents sent via email or fax.
Adi Darmawan, Ph.D (Editor in Chief)
Editor in chief of Jurnal Kimia Sains dan Aplikasi (JKSA)
Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University
Visitor: View My Stats
Jurnal Kimia Sains dan Aplikasi is indexed in:
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.