skip to main content

Synthesis of NiFe₂O₄ Magnetic Using Artocarpus altilis Leave Extract for Photocatalytic Degradation of Methylene Blue Dye and Antibacterial Applications

1Master Program in Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Ogan Ilir, Indonesia

2Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Ogan Ilir, Indonesia

3Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Ogan Ilir, Indonesia

Received: 10 May 2024; Revised: 27 Jul 2024; Accepted: 16 Aug 2024; Published: 31 Aug 2024.
Open Access Copyright 2024 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

The green synthesis method is an economical and eco-friendly approach to synthesizing materials. This study effectively synthesized magnetic NiFe2O4 by Artocarpus altilis extract leave for the photocatalytic degradation of Methylene blue dye and exhibited antibacterial properties. The phytochemical compounds found in plants act as agents for reducing and stabilizing NiFe2O4. The synthesized NiFe2O4 was examined using X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), ultraviolet-visible diffuse reflectance spectroscopy (UV-DRS), and vibrating sample magnetometry (VSM). The variables in degradation include solution pH, dye concentration, catalyst dose, and irradiation time. The synthesized NiFe2O4 has a 12.4 nm crystallite size, a saturation magnetization (Ms) of 44.56 emu/g, and a band gap of 1.68 eV. The degradation efficiency of methylene blue dye was 98.2% under the following conditions: a solution pH of 10, a concentration of 10 mg/L, a dose of 0.1 g/L, and an irradiation time of 90 min. The degradation mechanism of Methylene blue dye may be accurately described by pseudo-first-order kinetics, with a kapp value of 0.0443 min-1. NiFe2O4 has high stability; after five degradation cycles, the degradation efficiency decreased by 4.45%. Additionally, NiFe2O4 demonstrates significant antibacterial activity against Staphylococcus aureus and Escherichia coli bacteria.

Fulltext View|Download
Keywords: Artocapus altilis leave; NiFe₂O₄; degradation; methylene blue dye; antibacterial
Funding: Universitas Sriwijaya under contract Hibah Profesi with contract number 0187/UN9.3.1/SK/2023 on April 18, 2023

Article Metrics:

  1. Lemya Boughrara, Farouk Zaoui, M'hamed Guezzoul, Fatima Zohra Sebba, Boumediene Bounaceur, Seghier Ould Kada, New alginic acid derivatives ester for methylene blue dye adsorption: kinetic, isotherm, thermodynamic, and mechanism study, International Journal of Biological Macromolecules, 205, (2022), 651-663 https://doi.org/10.1016/j.ijbiomac.2022.02.087
  2. Somia Djelloul Bencherif, Juan Jesús Gallardo, Iván Carrillo-Berdugo, Abdellah Bahmani, Javier Navas, Synthesis, Characterization and Photocatalytic Performance of Calcined ZnCr-Layered Double Hydroxides, Nanomaterials, 11, 11, (2021), 3051 https://doi.org/10.3390/nano11113051
  3. Liping Sun, Yinghui Mo, Lu Zhang, A mini review on bio-electrochemical systems for the treatment of azo dye wastewater: State-of-the-art and future prospects, Chemosphere, 294, (2022), 133801 https://doi.org/10.1016/j.chemosphere.2022.133801
  4. Lukman A. Yusuf, Zeliha Ertekin, Shaun Fletcher, Mark D. Symes, Enhanced ultrasonic degradation of methylene blue using a catalyst-free dual-frequency treatment, Ultrasonics Sonochemistry, 103, (2024), 106792 https://doi.org/10.1016/j.ultsonch.2024.106792
  5. Zuming He, Yongmei Xia, Jiangbin Su, Bin Tang, Fabrication of magnetically separable NiFe2O4/Bi24O31Br10 nanocomposites and excellent photocatalytic performance under visible light irradiation, Optical Materials, 88, (2019), 195-203 https://doi.org/10.1016/j.optmat.2018.11.025
  6. J. Hemalatha, M. Senthil, D. Madhan, Amal M. Al-Mohaimeed, Wedad A. Al-onazi, Fabrication of NiFe2O4 nanoparticles loaded on activated carbon as novel composites for high efficient ultra violet-light photocatalysis for degradation of aqueous organic pollutants, Diamond and Related Materials, 144, (2024), 110995 https://doi.org/10.1016/j.diamond.2024.110995
  7. Cheikh Reda Bernaoui, Abdelaziz Bendraoua, Farouk Zaoui, Juan Jesús Gallardo, Javier Navas, Rafik Abdelkrim Boudia, Houria Djediai, Nor el Houda Goual, Mehdi Adjdir, Synthesis and characterization of NiFe2O4 nanoparticles as reusable magnetic nanocatalyst for organic dyes catalytic reduction: Study of the counter anion effect, Materials Chemistry and Physics, 292, (2022), 126793 https://doi.org/10.1016/j.matchemphys.2022.126793
  8. Fatima Habeche, Mohammed Hachemaoui, Adel Mokhtar, Karim Chikh, Fadila Benali, Amel Mekki, Farouk Zaoui, Zakaria Cherifi, Bouhadjar Boukoussa, Recent Advances on the Preparation and Catalytic Applications of Metal Complexes Supported-Mesoporous Silica MCM-41 (Review), Journal of Inorganic and Organometallic Polymers and Materials, 30, 11, (2020), 4245-4268 https://doi.org/10.1007/s10904-020-01689-1
  9. Dan Feng, Audrey Soric, Olivier Boutin, Treatment technologies and degradation pathways of glyphosate: A critical review, Science of The Total Environment, 742, (2020), 140559 https://doi.org/10.1016/j.scitotenv.2020.140559
  10. Rahmat Hidayat, Ganjar Fadillah, Shin-Ichi Ohira, Febi Indah Fajarwati, Dian Ayu Setyorini, Anggi Saputra, Facile green synthesis of Ag doped TiO2 nanoparticles using maple leaf for bisphenol-A degradation and its antibacterial properties, Materials Today Sustainability, 26, (2024), 100752 https://doi.org/10.1016/j.mtsust.2024.100752
  11. Md Abdulla Sayem, Md Amran Hossen Suvo, Ishtiaque M. Syed, Mahabub Alam Bhuiyan, Effective adsorption and visible light driven enhanced photocatalytic degradation of rhodamine B using ZnO nanoparticles immobilized on graphene oxide nanosheets, Results in Physics, 58, (2024), 107471 https://doi.org/10.1016/j.rinp.2024.107471
  12. P. A. Luque, H. E. Garrafa-Gálvez, O. Nava, A. Olivas, M. E. Martínez-Rosas, A. R. Vilchis-Nestor, A. Villegas-Fuentes, M. J. Chinchillas-Chinchillas, Efficient sunlight and UV photocatalytic degradation of Methyl Orange, Methylene Blue and Rhodamine B, using Citrus×paradisi synthesized SnO2 semiconductor nanoparticles, Ceramics International, 47, 17, (2021), 23861-23874 https://doi.org/10.1016/j.ceramint.2021.05.094
  13. Kathirvel Brindhadevi, T. P. Kim, Sulaiman Ali Alharbi, M. D. Ramesh, Jintae Lee, Devaraj Bharathi, Enhanced photocatalytic degradation of polycyclic aromatic hydrocarbons (PAHs) Using NiO nanoparticles, Environmental Research, 252, (2024), 118454 https://doi.org/10.1016/j.envres.2024.118454
  14. Seerangaraj Vasantharaj, Selvam Sathiyavimal, Palanisamy Senthilkumar, Felix LewisOscar, Arivalagan Pugazhendhi, Biosynthesis of iron oxide nanoparticles using leaf extract of Ruellia tuberosa: Antimicrobial properties and their applications in photocatalytic degradation, Journal of Photochemistry and Photobiology B: Biology, 192, (2019), 74-82 https://doi.org/10.1016/j.jphotobiol.2018.12.025
  15. Keerti Jain, Anand S. Patel, Vishwas P. Pardhi, Swaran Jeet Singh Flora, Nanotechnology in Wastewater Management: A New Paradigm Towards Wastewater Treatment, Molecules, 26, 6, (2021), 1797 https://doi.org/10.3390/molecules26061797
  16. Karen L. Rincón-Granados, América R. Vázquez-Olmos, Adriana-Patricia Rodríguez-Hernández, Alejandro Vega-Jiménez, Fabián Ruiz, Vicente Garibay-Febles, Laurie-Ann Ximénez-Fyvie, Facile solid-state synthesis and study in vitro of the antibacterial activity of NiO and NiFe2O4 nanoparticles, Materialia, 15, (2021), 100955 https://doi.org/10.1016/j.mtla.2020.100955
  17. Poedji Loekitowati Hariani, Muhammad Said, Addy Rachmat, Fahma Riyanti, Handayani Citra Pratiwi, Widya Twiny Rizki, Preparation of NiFe2O4 Nanoparticles by Solution Combustion Method as Photocatalyst of Congo red, Bulletin of Chemical Reaction Engineering & Catalysis, 16, 3, (2021), 481-490 https://doi.org/10.9767/bcrec.16.3.10848.481-490
  18. Abdul Raouf Malik, Muhammad Hammad Aziz, Muhammad Atif, Muhammad Sultan Irshad, Hafeez Ullah, Tuan Nguyen Gia, Hijaz Ahmed, Shafiq Ahmad, Thongchai Botmart, Lime peel extract induced NiFe2O4 NPs: Synthesis to applications and oxidative stress mechanism for anticancer, antibiotic activity, Journal of Saudi Chemical Society, 26, 2, (2022), 101422 https://doi.org/10.1016/j.jscs.2022.101422
  19. Trimurti L. Lambat, Pankaj V. Ledade, Jitendra K. Gunjate, Vivek R. Bahekar, Sami H. Mahmood, Subhash Banerjee, Recent developments in the organic synthesis using nano-NiFe2O4 as reusable catalyst: A comprehensive synthetic & catalytic reusability protocol, Results in Chemistry, 6, (2023), 101176 https://doi.org/10.1016/j.rechem.2023.101176
  20. Farzana Majid, Javeria Rauf, Sadia Ata, Ismat Bibi, Abdul Malik, Sobhy M. Ibrahim, Adnan Ali, Munawar Iqbal, Synthesis and characterization of NiFe2O4 ferrite: Sol–gel and hydrothermal synthesis routes effect on magnetic, structural and dielectric characteristics, Materials Chemistry and Physics, 258, (2021), 123888 https://doi.org/10.1016/j.matchemphys.2020.123888
  21. Yilin Liu, Tong Liu, Linfeng Zhang, Huadong Wu, Jia Guo, Xuelei Hu, One-pot synthesized NiFe2O4/CeO2 composite catalyst for efficient degradation of methylene blue via photocatalysis under visible light, Catalysis Communications, 185, (2023), 106814 https://doi.org/10.1016/j.catcom.2023.106814
  22. Rajender S. Varma, Greener approach to nanomaterials and their sustainable applications, Current Opinion in Chemical Engineering, 1, 2, (2012), 123-128 https://doi.org/10.1016/j.coche.2011.12.002
  23. Salar Hafez Ghoran, Maryam Fadaei Dashti, Aram Maroofi, Mustafa Shafiee, Alireza Zare-Hoseinabadi, Farahnaz Behzad, Mohsen Mehrabi, Ali Jangjou, Kazem Jamali, Biosynthesis of Zinc Ferrite Nanoparticles Using Polyphenol-rich extract of Citrus aurantium flowers, Nanomedicine Research Journal, 5, 1, (2020), 20-28 https://doi.org/10.22034/NMRJ.2020.01.003
  24. Dyah Ayu Larasati, Deska Lismawenning Puspitarum, Mahardika Yoga Darmawan, Nurul Imani Istiqomah, Juliasih Partini, Hasniah Aliah, Edi Suharyadi, Green synthesis of CoFe2O4/ZnS composite nanoparticles utilizing Moringa Oleifera for magnetic hyperthermia applications, Results in Materials, 19, (2023), 100431 https://doi.org/10.1016/j.rinma.2023.100431
  25. Yunhui Bao, Jian He, Ke Song, Jie Guo, Xianwu Zhou, Shima Liu, Plant-Extract-Mediated Synthesis of Metal Nanoparticles, Journal of Chemistry, 2021, 1, (2021), 6562687 https://doi.org/10.1155/2021/6562687
  26. Imtiyaz Hussain, N. B. Singh, Ajey Singh, Himani Singh, S. C. Singh, Green synthesis of nanoparticles and its potential application, Biotechnology Letters, 38, 4, (2016), 545-560 https://doi.org/10.1007/s10529-015-2026-7
  27. Thana Shuga Aldeen, Hamza Elsayed Ahmed Mohamed, Malik Maaza, ZnO nanoparticles prepared via a green synthesis approach: Physical properties, photocatalytic and antibacterial activity, Journal of Physics and Chemistry of Solids, 160, (2022), 110313 https://doi.org/10.1016/j.jpcs.2021.110313
  28. Mostafa Yusefi, Kamyar Shameli, Ong Su Yee, Sin-Yeang Teow, Ziba Hedayatnasab, Hossein Jahangirian, Thomas J. Webster, Kamil Kuča, Green synthesis of Fe3O4 nanoparticles stabilized by a Garcinia mangostana fruit peel extract for hyperthermia and anticancer activities, International Journal of Nanomedicine, 2021, 16, (2021), 2515-2532 https://doi.org/10.2147/IJN.S284134
  29. S. S. Banifatemi, F. Davar, B. Aghabarari, Juan A. Segura, Francisco J. Alonso, Seyyed M. Ghoreishi, Green synthesis of CoFe2O4 nanoparticles using olive leaf extract and characterization of their magnetic properties, Ceramics International, 47, 13, (2021), 19198-19204 https://doi.org/10.1016/j.ceramint.2021.03.267
  30. Veeranna R. Kattimani, K. V. Yatish, K. Pramoda, M. Sakar, R. Geetha Balakrishna, Acacia furnesiana plant as a novel green source for the synthesis of NiFe2O4 magnetic nanocatalyst and as feedstock for sustainable high quality biofuel production, Fuel, 348, (2023), 128549 https://doi.org/10.1016/j.fuel.2023.128549
  31. Mukesh S. Sikarwar, Boey Jia Hui, Kumutha Subramaniam, Bavani Devi Valeisamy, Ling Kar Yean, Kaveti Balaji, A Review on Artocarpus altilis (Parkinson) Fosberg (breadfruit), Journal of Applied Pharmaceutical Science, 4, 8, (2014), 091-097
  32. Carmen X. Luzuriaga-Quichimbo, José Blanco-Salas, Carlos E. Cerón-Martínez, Trinidad Ruiz-Téllez, Providing added value to local uses of paparahua (Artocarpus altilis) in Amazonian Ecuador by phytochemical data review, Revista Brasileira de Farmacognosia, 29, 1, (2019), 62-68 https://doi.org/10.1016/j.bjp.2018.09.008
  33. U. B. Jagtap, V. A. Bapat, Artocarpus: A review of its traditional uses, phytochemistry and pharmacology, Journal of Ethnopharmacology, 129, 2, (2010), 142-166 https://doi.org/10.1016/j.jep.2010.03.031
  34. Lisha Liu, Yuanhua Li, Arwa A. Al-Huqail, Elimam Ali, Tamim Alkhalifah, Fahad Alturise, H. Elhosiny Ali, Green synthesis of Fe3O4 nanoparticles using Alliaceae waste (Allium sativum) for a sustainable landscape enhancement using support vector regression, Chemosphere, 334, (2023), 138638 https://doi.org/10.1016/j.chemosphere.2023.138638
  35. Michel Zampieri Fidelis, Giulia Caroline de Cristo Borges, Eduardo Abreu, Giane Gonçalves Lenzi, Henrique Emilio Zorel Junior, Odivaldo Cambraia Alves, Rodrigo Brackmann, Onelia Aparecida Bassoli Andreo, NiFe2O4–TiO2 magnetic nanoparticles synthesized by the thermal decomposition of 8-hydroxyquinolinates as efficient photocatalysts for the removal of As(III) from water, Optical Materials, 145, (2023), 114490 https://doi.org/10.1016/j.optmat.2023.114490
  36. Subrata Karmakar, Krutika L. Routray, Bandana Panda, Bibekananda Sahoo, Dhrubananda Behera, Construction of core@shell nanostructured NiFe2O4@TiO2 ferrite NAND logic gate using fluorescence quenching mechanism for TiO2 sensing, Journal of Alloys and Compounds, 765, (2018), 527-537 https://doi.org/10.1016/j.jallcom.2018.06.100
  37. Zena Mohammed Ali Abbas, Wafaa A. Shatti, Mahmood M. Kareem, Ziad T. Khodair, Synthesis and characterization of NiFe2O4/CuO nanocomposites: Structural and magnetic properties analysis, Chemical Data Collections, 47, (2023), 101078 https://doi.org/10.1016/j.cdc.2023.101078
  38. Waleed M. Alamier, Nazim Hasan, M. D. Sarfaraz Nawaz, Khatib Sayeed Ismail, Mohd Shkir, Maqsood Ahmad Malik, Mohammed D. Y. Oteef, Biosynthesis of NiFe2O4 nanoparticles using Murayya koenigii for photocatalytic dye degradation and antibacterial application, Journal of Materials Research and Technology, 22, (2023), 1331-1348 https://doi.org/10.1016/j.jmrt.2022.11.181
  39. Amira Ahmed Abd El Khalk, Mohamed Ahmed Betiha, Ahmed Sadek Mansour, Mohamed Gamal Abd El Wahed, Ahmad Mohamad Al-Sabagh, High Degradation of Methylene Blue Using a New Nanocomposite Based on Zeolitic Imidazolate Framework-8, ACS Omega, 6, 40, (2021), 26210-26220 https://doi.org/10.1021/acsomega.1c03195
  40. Zeynep Kalaycıoğlu, Bengü Özuğur Uysal, Önder Pekcan, F. Bedia Erim, Efficient Photocatalytic Degradation of Methylene Blue Dye from Aqueous Solution with Cerium Oxide Nanoparticles and Graphene Oxide-Doped Polyacrylamide, ACS Omega, 8, 14, (2023), 13004-13015 https://doi.org/10.1021/acsomega.3c00198
  41. Aubrey Makofane, Popoti J. Maake, Morongwa M. Mathipa, Nolubabalo Matinise, Franscious R. Cummings, David E. Motaung, Nomso C. Hintsho-Mbita, Green synthesis of NiFe2O4 nanoparticles for the degradation of Methylene Blue, sulfisoxazole and bacterial strains, Inorganic Chemistry Communications, 139, (2022), 109348 https://doi.org/10.1016/j.inoche.2022.109348
  42. Yixing Gao, Wenping Cao, Kaixuan Wang, Hangyu Shi, Shumin Wang, Qingnan Meng, Keqin Du, Chuan Wang, Junliang Lin, Performance and mechanism of magnetic Fe3O4@MnO2 catalyst for rapid degradation of methylene blue by activation of peroxymonosulfate, Journal of Alloys and Compounds, 987, (2024), 174144 https://doi.org/10.1016/j.jallcom.2024.174144
  43. M. MuthuKathija, Selvaraj Muthusamy, R. Imran Khan, M. Sheik Muhideen Badhusha, Kanagaraj Rajalakshmi, V. Rama, Yuanguo Xu, Photocatalytic degradation of methylene blue dye using biogenic copper oxide nanoparticles and its degradation pathway analysis, Inorganic Chemistry Communications, 161, (2024), 111929 https://doi.org/10.1016/j.inoche.2023.111929
  44. Vijayamari Arumugaperumal, Sadaiyandi K., Solar light driven photocatalytic degradation of methylene blue dye over Cu doped α-MnO2 nanoparticles, Chemical Physics Impact, 8, (2024), 100434 https://doi.org/10.1016/j.chphi.2023.100434
  45. Sook-Keng Chang, Qurat-ul-Ain Abbasi, Zeeshan Abbasi, Fatima Khushbakht, Inam Ullah, Fazal Ur Rehman, Muhammad Hafeez, Rapid pH-dependent Photocatalytic Degradation of Methylene Blue by CdS Nanorods Synthesized through Hydrothermal Process, Arabian Journal of Chemistry, 17, 1, (2024), 105422 https://doi.org/10.1016/j.arabjc.2023.105422
  46. Xianfeng Meng, Yan Zhuang, Hua Tang, Chunhua Lu, Hierarchical structured ZnFe2O4@SiO2@TiO2 composite for enhanced visible-light photocatalytic activity, Journal of Alloys and Compounds, 761, (2018), 15-23 https://doi.org/10.1016/j.jallcom.2018.05.150
  47. Fatemeh Poorsajadi, Mohammad Hossein Sayadi, Mahmood Hajiani, Mohammad Reza Rezaei, Synthesis of CuO/Bi2O3 nanocomposite for efficient and recycling photodegradation of methylene blue dye, International Journal of Environmental Analytical Chemistry, 102, 18, (2022), 7165-7178 https://doi.org/10.1080/03067319.2020.1826464
  48. Vincent Otieno Odhiambo, Thong Le Ba, Zoltán Kónya, Csaba Cserháti, Zoltán Erdélyi, Maritim C Naomi, Imre Miklós Szilágyi, Preparation of TiO2–MoO3 composite nanofibers by water-based electrospinning process and their application in photocatalysis, Materials Science in Semiconductor Processing, 147, (2022), 106699 https://doi.org/10.1016/j.mssp.2022.106699
  49. Yuan Zhang, Tianyi Cui, Jianbo Zhao, Yumin Yan, Jianhui Jiang, Fabrication and study of a novel TiO2/g-C3N5 material and photocatalytic properties using methylene blue and tetracycline under visible light, Inorganic Chemistry Communications, 143, (2022), 109815 https://doi.org/10.1016/j.inoche.2022.109815
  50. Ibrahim F. Waheed, Muwafaq A. Hamad, Khalaf A. Jasim, Andre J. Gesquiere, Degradation of methylene blue using a novel magnetic CuNiFe2O4/g-C3N4 nanocomposite as heterojunction photocatalyst, Diamond and Related Materials, 133, (2023), 109716 https://doi.org/10.1016/j.diamond.2023.109716
  51. Tripta, Pawan S. Rana, NiFe2O4/ZnO nanocomposites for degradation of MB dye with their local electrical behavior, Journal of Molecular Structure, 1282, (2023), 135160 https://doi.org/10.1016/j.molstruc.2023.135160
  52. Nan Wang, Juan Li, Lyumeng Ye, Xinjun Li, Heterogeneous nanostructure anatase/rutile titania supported platinum nanoparticles for efficient photocatalytic degradation of methylene blue dyes, Sustainable Chemistry for the Environment, 5, (2024), 100072 https://doi.org/10.1016/j.scenv.2024.100072
  53. A. Manohar, V. Vijayakanth, Ruoyu Hong, Solvothermal reflux synthesis of NiFe2O4 nanocrystals dielectric and magnetic hyperthermia properties, Journal of Materials Science: Materials in Electronics, 31, 1, (2020), 799-806 https://doi.org/10.1007/s10854-019-02588-z

Last update:

No citation recorded.

Last update: 2024-11-01 11:37:12

No citation recorded.