skip to main content

Sulfonation of Eugenol-Diallyl Phthalate Copolymer as Base Material of Supercapacitor Electrode Material

Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof. Soedarto, SH., Tembalang, Semarang, Indonesia

Received: 28 Aug 2024; Revised: 14 Nov 2024; Accepted: 18 Nov 2024; Published: 30 Nov 2024.
Open Access Copyright 2024 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

Polyeugenol is a polymer synthesized from renewable natural resources and has potential as a supercapacitor electrode material. Polyeugenol was modified by the addition of diallyl phthalate to increase structural density and thermal stability and the addition of sulfonate groups to increase ion exchange capacity and electrical conductivity. This research begins with the synthesis of eugenol-diallyl phthalate copolymer (PEGDAF) carried out by cationic polymerization using BF3O(C2H5)2 catalyst and sulfonation of eugenol-diallyl phthalate copolymer (SPEGDAF) using sulfuric acid. The synthesis of PEGDAF in the form of pink solids with a yield of 68.44%, a molecular weight of 6739.99 Daltons, and a melting point of 85°C, FTIR analysis showed that the formation of PEGDAF was characterized by the loss of vinyl groups with the absence of C=C alkene wavenumber absorption which is the wavenumber absorption of eugenol and diallyl phthalate, respectively 1640 cm-1 and 1647 cm-1 and TGA with a mass loss of 5% and 10% at 176°C and 219°C. SPEGDAF results in dark purple solids with a sulfonation degree of 17.18% and a cation exchange capacity of 0.4186 meq/g, molecular weight 8342.25 Daltons, melting point 114°C. Analysis using FTIR showed the presence of sulfonate groups with the resulting absorption peaks of 1218 cm-1 (S=O), 1065 cm-1 (S-O), and 578 cm-1 (C-S) and TGA with a mass decrease of 5% and 10% at temperatures of 169°C and 215°C. Potential test of supercapacitor electrode material with Cyclic Voltammetry and Electrochemical Impedance Spectroscopy obtained a specific capacitance value of 3.23 × 10-3 F/g and ion conductivity of 7.58 × 10-6 S/cm.

Fulltext View|Download
Keywords: eugenol-diallyl phthalate copolymer; sulfonation; supercapacitor electrode
Funding: Diponegoro University under contract 609-87/UN7.D2/PP/VIII/2023

Article Metrics:

  1. Idris Azizi, Hammoud Radjeai, A new strategy for battery and supercapacitor energy management for an urban electric vehicle, Electrical Engineering, 100, 2, (2018), 667-676 https://doi.org/10.1007/s00202-017-0535-1
  2. Tapan K. Das, Smita Prusty, Review on Conducting Polymers and Their Applications, Polymer-Plastics Technology and Engineering, 51, 14, (2012), 1487-1500 https://doi.org/10.1080/03602559.2012.710697
  3. Lesi Yu, Baohua Yue, Liuming Yan, Hongbin Zhao, Jiujun Zhang, Proton conducting composite membranes based on sulfonated polysulfone and polysulfone-g-(phosphonated polystyrene) via controlled atom-transfer radical polymerization for fuel cell applications, Solid State Ionics, 338, (2019), 103-112 https://doi.org/10.1016/j.ssi.2019.05.012
  4. Tina Modjinou, Davy-Louis Versace, Samir Abbad-Andallousi, Noureddine Bousserrhine, Pierre Dubot, Valérie Langlois, Estelle Renard, Antibacterial and antioxidant bio-based networks derived from eugenol using photo-activated thiol-ene reaction, Reactive and Functional Polymers, 101, (2016), 47-53 https://doi.org/10.1016/j.reactfunctpolym.2016.02.002
  5. Chaoqun Zhang, Junqi Xue, Xiangyu Yang, Yanzi Ke, Rongxian Ou, Yang Wang, Samy A. Madbouly, Qingwen Wang, From plant phenols to novel bio-based polymers, Progress in Polymer Science, 125, (2022), 101473 https://doi.org/10.1016/j.progpolymsci.2021.101473
  6. Ngadiwiyana Ngadiwiyana, Nor Basid Adiwibawa Prasetya, Gunawan Gunawan, Tutuk Djoko Kusworo, Heru Susanto, Synthesis, Characterization, and Study of Proton Exchange Polymer Membrane Properties of Sulfonated Copolymer Eugenol-diallyl Phthalate, Indonesian Journal of Chemistry, 21, 1, (2020), 168-178 https://doi.org/10.22146/ijc.55353
  7. Yubo Zou, Zhicheng Zhang, Wenbin Zhong, Wantai Yang, Hydrothermal direct synthesis of polyaniline, graphene/polyaniline and N-doped graphene/polyaniline hydrogels for high performance flexible supercapacitors, Journal of Materials Chemistry A, 6, 19, (2018), 9245-9256 https://doi.org/10.1039/c8ta01366g
  8. Jin Yao, Guoxiao Xu, Ziming Zhao, Jing Guo, Shenghai Li, Weiwei Cai, Suobo Zhang, An enhanced proton conductivity and reduced methanol permeability composite membrane prepared by sulfonated covalent organic nanosheets/Nafion, International Journal of Hydrogen Energy, 44, 45, (2019), 24985-24996 https://doi.org/10.1016/j.ijhydene.2019.07.197
  9. Nor Basid Adiwibawa Prasetya, Aniq Ibnu Ajizan, Didik Setiyo Widodo, Ngadiwiyana Ngadiwiyana, Gunawan Gunawan, A polyeugenol/graphene composite with excellent anti-corrosion coating properties, Materials Advances, 4, 1, (2023), 248-255 https://doi.org/10.1039/d2ma00875k
  10. Alejandro Vega, Claudia Hernández, Sergio Flores, Armando Zaragoza, Synthesis and Electroactivity of Polystyrene/polyaniline Core–shell Composites, Proceedings of the 4th International Conference on Nanotechnology: Fundamentals and Applications, Toronto, Ontario, Canada, 2013
  11. Haider Abdulkareem AlMashhadani, Khulood Abed saleh, Corrosion Protection of Pure Titanium Implant by Electrochemical Deposition of Hydroxyapatite Post-Anodizing, IOP Conference Series: Materials Science and Engineering, 571, (2019), 012071 https://doi.org/10.1088/1757-899X/571/1/012071
  12. A. A. Kiswandono, S. Hadi, Mudasir, F. Sinjia, M. Y. Sari, M. Irfan, Copoly Eugenol Crosslinked Dialylphthalate 8% as a Carrier in Phenol and Pb(II) Metal Transport, Journal of Physics: Conference Series, 1338, (2019), 012004 https://doi.org/10.1088/1742-6596/1338/1/012004
  13. Qinzhuo Wang, Yunyun Lu, Na Li, Preparation, characterization and performance of sulfonated poly(styrene-ethylene/butylene-styrene) block copolymer membranes for water desalination by pervaporation, Desalination, 390, (2016), 33-46 https://doi.org/10.1016/j.desal.2016.04.005
  14. Chalida Klaysom, Bradley P. Ladewig, G. Q. Max Lu, Lianzhou Wang, Preparation and characterization of sulfonated polyethersulfone for cation-exchange membranes, Journal of Membrane Science, 368, 1, (2011), 48-53 https://doi.org/10.1016/j.memsci.2010.11.006
  15. Edi Pramono, Chintya Dewi, Fitria Rahmawati, Kinetics Study on Thermal Degradation of Polystyrene and Sulfonated Polystyrene from Styrofoam Waste, Molekul, 18, 3, (2023), 386-395 https://doi.org/10.20884/1.jm.2023.18.3.7306
  16. Christopher Sandford, Martin A. Edwards, Kevin J. Klunder, David P. Hickey, Min Li, Koushik Barman, Matthew S. Sigman, Henry S. White, Shelley D. Minteer, A synthetic chemist's guide to electroanalytical tools for studying reaction mechanisms, Chemical Science, 10, 26, (2019), 6404-6422 https://doi.org/10.1039/c9sc01545k
  17. Dewi Marina, Widodo Budi Kurniawan, Karakteristik Karbon Aktif Limbah Kulit Lada (Piper Nigrum L) sebagai Elektroda Superkapasitor, Jurnal Riset Fisika Indonesia, 2, 1, (2021), 7-14 https://doi.org/10.33019/jrfi.v2i1.3171
  18. Irzaman Irzaman, R. Erviansyah, H. Syafutra, A. Maddu, Siswadi Siswadi, Studi Konduktivitas Listrik Film Tipis Ba0.25Sr0.75TiO3 Yang Didadah Ferium Oksida (BFST) Menggunakan Metode Chemical Solution Deposition, BERKALA FISIKA, 13, (2012), 33-38
  19. Franciélli Müller, Carlos A. Ferreira, Lourdes Franco, Jordi Puiggalí, Carlos Alemán, Elaine Armelin, New Sulfonated Polystyrene and Styrene–Ethylene/Butylene–Styrene Block Copolymers for Applications in Electrodialysis, The Journal of Physical Chemistry B, 116, 38, (2012), 11767-11779 https://doi.org/10.1021/jp3068415

Last update:

No citation recorded.

Last update: 2025-01-20 01:24:31

No citation recorded.