skip to main content

Unraveling the Density and Hardness of Sintered Hydroxyapatite: A Conclusive Comparison of Laboratory-Synthesized Versus Commercial Variants

1Department of Mechanical Engineering, Faculty of Engineering, Mercu Buana University, Jakarta, Indonesia

2Department of Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung, Indonesia

3Center of Excellence Advanced Materials, Nano Center Indonesia, Tangerang Selatan, Indonesia

Received: 3 Dec 2024; Revised: 4 Apr 2025; Accepted: 9 Apr 2025; Published: 30 Apr 2025.
Open Access Copyright 2025 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract
Hydroxyapatite (HA) is a bioceramic widely utilized in the medical field as a substitute for bone and dental applications. The mechanical properties of HA are influenced by its microstructure, which varies based on the source of the material, whether it is commercially acquired or laboratory-synthesized. This study aims to investigate and compare the properties of commercially available HA with those of laboratory-synthesized HA, as well as their mixtures, focusing on density and hardness. To conduct this investigation, both laboratory-synthesized and commercial HA were sintered at temperatures of 800°C, 900°C, 1000°C, and 1100°C for a duration of two hours. Additionally, various mixtures of the two sources of HA were prepared in weight percent ratios of 0:100, 30:70, 50:50, 70:30, and 100:0 using a planetary ball mill, also for two hours. The density of sintered HA was determined using Archimedes’ principle, while its hardness was evaluated using a Vickers hardness tester. The findings revealed that laboratory-synthesized HA sintered at 1100°C exhibited the highest density and hardness, measuring 3.15 g/cm3 and 488.9 MPa, respectively. This superior performance can be attributed to the smaller particle size of the laboratory-synthesized HA, which enhances densification. The dense structure of the laboratory-synthesized HA results in reduced porosity and smaller grain sizes, as evidenced by scanning electron microscopy images. In contrast, the commercial HA achieved a density of only 3.00 g/cm3 at the same sintering temperature of 1100°C, attributable to poorer densification and a resultant porous microstructure. Notably, the mixture of commercial and laboratory-synthesized HA at a ratio of 30:70 demonstrated properties closely aligned with those of pure laboratory-synthesized HA, achieving a density of 3.14 g/cm3 and a hardness of 477.3 MPa. These results underscore the importance of source material and processing conditions in determining the mechanical properties of hydroxyapatite.
Fulltext View|Download
Keywords: Density; Hydroxyapatite; Hardness; Sintering Temperature

Article Metrics:

  1. Fifi Afifah, Sari Edi Cahyaningrum, Sintesis dan karakterisasi hidroksiapatit dari tulang sapi (Bos Taurus) menggunakan teknik kalsinasi, UNESA Journal of Chemistry, 9, 3, (2020), 189-196 https://doi.org/10.26740/ujc.v9n3.p189-196
  2. Sergey V. Dorozhkin, Bioceramics of calcium orthophosphates, Biomaterials, 31, 7, (2010), 1465-1485 https://doi.org/10.1016/j.biomaterials.2009.11.050
  3. Sudip Mondal, Sumin Park, Jaeyeop Choi, Thi Thu Ha Vu, Vu Hoang Minh Doan, Truong Tien Vo, Byeongil Lee, Junghwan Oh, Hydroxyapatite: A journey from biomaterials to advanced functional materials, Advances in Colloid and Interface Science, 321, (2023), 103013 https://doi.org/10.1016/j.cis.2023.103013
  4. N. A. S. Mohd Pu'ad, R. H. Abdul Haq, H. Mohd Noh, H. Z. Abdullah, M. I. Idris, T. C. Lee, Synthesis method of hydroxyapatite: A review, Materials Today: Proceedings, 29, (2020), 233-239 https://doi.org/10.1016/j.matpr.2020.05.536
  5. Elisa Fiume, Giulia Magnaterra, Abbas Rahdar, Enrica Verné, Francesco Baino, Hydroxyapatite for Biomedical Applications: A Short Overview, Ceramics, 4, 4, (2021), 542-563 https://doi.org/10.3390/ceramics4040039
  6. Samar J. Kalita, Abhilasha Bhardwaj, Himesh A. Bhatt, Nanocrystalline calcium phosphate ceramics in biomedical engineering, Materials Science and Engineering: C, 27, 3, (2007), 441-449 https://doi.org/10.1016/j.msec.2006.05.018
  7. Brigitte Wopenka, Jill D. Pasteris, A mineralogical perspective on the apatite in bone, Materials Science and Engineering: C, 25, 2, (2005), 131-143 https://doi.org/10.1016/j.msec.2005.01.008
  8. M. Bilton, A. P. Brown, S. J. Milne, Sol-gel synthesis and characterisation of nano-scale hydroxyapatite, Journal of Physics: Conference Series, 241, 1, (2010), 012052 https://doi.org/10.1088/1742-6596/241/1/012052
  9. Iain R. Gibson, 1.3.4A - Natural and Synthetic Hydroxyapatites, in: W.R. Wagner, S.E. Sakiyama-Elbert, G. Zhang, M.J. Yaszemski (Eds.) Biomaterials Science (Fourth Edition), Academic Press, 2020, https://doi.org/10.1016/B978-0-12-816137-1.00023-4
  10. Xuan Cai, Hua Tong, Xinyu Shen, Weixuan Chen, Juan Yan, Jiming Hu, Preparation and characterization of homogeneous chitosan–polylactic acid/hydroxyapatite nanocomposite for bone tissue engineering and evaluation of its mechanical properties, Acta Biomaterialia, 5, 7, (2009), 2693-2703 https://doi.org/10.1016/j.actbio.2009.03.005
  11. Ade Indra, Ridwan Firdaus, Ismet Hari Mulyadi, Jon Affi, Gunawarman, Enhancing the physical and mechanical properties of pellet-shaped hydroxyapatite by controlling micron- and nano-sized powder ratios, Ceramics International, 46, 10, Part B, (2020), 15882-15888 https://doi.org/10.1016/j.ceramint.2020.03.136
  12. Yusuf Wibisono, Ni Luh Bella Dwijaksara, Wahyu Bambang Widayatno, Agus Sukarto Wismogroho, Muhamad Ikhlasul Amal, Nurul Taufiqu Rochman, Toshiyuki Nishimura, Alfian Noviyanto, Synthesis and Sinterability of Hydroxyapatite from Fishery by-products, Journal of Korean Ceramic Society, 55, 6, (2018), 570-575 https://doi.org/10.4191/kcers.2018.55.6.03
  13. Mohammad Zulhasif Ahmad Khiri, Khamirul Amin Matori, Mohd Hafiz Mohd Zaid, Che Azurahanim Che Abdullah, Norhazlin Zainuddin, Ibrahim Mustapha Alibe, Nadia Asyikin Abdul Rahman, Siti Aisyah Abdul Wahab, Aisyah Zakiah Khirel Azman, Nuraidayani Effendy, Crystallization behavior of low-cost biphasic hydroxyapatite/β-tricalcium phosphate ceramic at high sintering temperatures derived from high potential calcium waste sources, Results in Physics, 12, (2019), 638-644 https://doi.org/10.1016/j.rinp.2018.12.025
  14. G. Muralithran, S. Ramesh, The effects of sintering temperature on the properties of hydroxyapatite, Ceramics International, 26, 2, (2000), 221-230 https://doi.org/10.1016/S0272-8842(99)00046-2
  15. Ade Indra, Gunawarman, Jon Affi, Ismet Hari Mulyadi, Yogi Wiyanto, Physical and mechanical properties of hydroxyapatite ceramics with a mixture of micron and nano-sized powders: optimising the sintering temperatures, Ceramics-Silikáty, 65, 3, (2021), 224-234 https://doi.org/10.13168/cs.2021.0022
  16. S. Ramesh, K. L. Aw, R. Tolouei, M. Amiriyan, C. Y. Tan, M. Hamdi, J. Purbolaksono, M. A. Hassan, W. D. Teng, Sintering properties of hydroxyapatite powders prepared using different methods, Ceramics International, 39, 1, (2013), 111-119 https://doi.org/10.1016/j.ceramint.2012.05.103
  17. Izmi Mahfudi, Joko Triyono, Teguh Triyono, Karakterisasi biokomposit sheep hydroxyapatite (sha)/shellac/tepung terigu, Mekanika: majalah ilmiah mekanika, 17, 2, (2018), 44-48 https://doi.org/10.20961/mekanika.v17i2.35125
  18. Junaidi Rasid, Joko Triyono, Teguh Triyono, Karakterisasi Material Biokomposit Bovine Hidroksapatit (BHA)/Shellac dan Kitosan Sebagai Material Bone Filler, ROTASI, 19, 2, (2017), 82-87 https://doi.org/10.14710/rotasi.19.2.82-87
  19. Md. Sahadat Hossain, Monika Mahmud, Sazia Sultana, Mashrafi Bin Mobarak, M. Saiful Islam, Samina Ahmed, Coupled effect of particle size of the source materials and calcination temperature on the direct synthesis of hydroxyapatite, Royal Society Open Science, 8, 9, (2021), 210684 https://doi.org/10.1098/rsos.210684
  20. M. Safarzadeh, Chin Fei Chee, S. Ramesh, M. N. Ahmad Fauzi, Effect of sintering temperature on the morphology, crystallinity and mechanical properties of carbonated hydroxyapatite (CHA), Ceramics International, 46, 17, (2020), 26784-26789 https://doi.org/10.1016/j.ceramint.2020.07.153
  21. Alfian Noviyanto, Dang-Hyok Yoon, Rare-earth oxide additives for the sintering of silicon carbide, Diamond and Related Materials, 38, (2013), 124-130 https://doi.org/10.1016/j.diamond.2013.07.003
  22. Alfian Noviyanto, Seung-Woo Han, Hyun-Woo Yu, Dang-Hyok Yoon, Rare-earth nitrate additives for the sintering of silicon carbide, Journal of the European Ceramic Society, 33, 15, (2013), 2915-2923 https://doi.org/10.1016/j.jeurceramsoc.2013.05.017
  23. M. N. Rahaman, 2 - Kinetics and mechanisms of densification, in: Z.Z. Fang (Ed.) Sintering of Advanced Materials, Woodhead Publishing, 2010, https://doi.org/10.1533/9781845699949.1.33
  24. Randall M. German, Liquid Phase Sintering, Springer New York, New York, 1985, ^ https://doi.org/10.1007/978-1-4899-3599-1
  25. E. Saiz, L. Gremillard, G. Menendez, P. Miranda, K. Gryn, A. P. Tomsia, Preparation of porous hydroxyapatite scaffolds, Materials Science and Engineering: C, 27, 3, (2007), 546-550 https://doi.org/10.1016/j.msec.2006.05.038
  26. Sung-Min Lee, Suk-Joong L. Kang, Theoretical analysis of liquid-phase sintering: Pore filling theory, Acta Materialia, 46, 9, (1998), 3191-3202 https://doi.org/10.1016/S1359-6454(97)00489-8
  27. Yusuf Wibisono, Syifa Navisa, Dinda Kiswara Arofah, Mochamad Bagus Hermanto, Alfian Noviyanto, Saiful, Tonni Agustiono Kurniawan, Comparative study of physical properties of hydroxyapatite derived from Asian moon scallop and batik shells using sol–gel techniques for producing inorganic membrane plate, Chemical Papers, 78, 12, (2024), 7125-7139 https://doi.org/10.1007/s11696-024-03592-2
  28. Md. Sahadat Hossain, Samina Ahmed, FTIR spectrum analysis to predict the crystalline and amorphous phases of hydroxyapatite: a comparison of vibrational motion to reflection, RSC Advances, 13, 21, (2023), 14625-14630 https://doi.org/10.1039/d3ra02580b
  29. José Reyes-Gasga, Esmeralda L. Martínez-Piñeiro, Galois Rodríguez-Álvarez, Gaby E. Tiznado-Orozco, Ramiro García-García, Etienne F. Brès, XRD and FTIR crystallinity indices in sound human tooth enamel and synthetic hydroxyapatite, Materials Science and Engineering: C, 33, 8, (2013), 4568-4574 https://doi.org/10.1016/j.msec.2013.07.014
  30. Atchara Khamkongkaeo, Thanachai Boonchuduang, Wantana Klysubun, Penphitcha Amonpattaratkit, H. thaichnok Chunate, Nutth Tuchinda, Adulphan Pimsawat, Sujittra Daengsakul, Pitphichaya Suksangrat, Wutthigrai Sailuam, Drusawin Vongpramate, Atipong Bootchanont, Boonrat Lohwongwatana, Sintering behavior and mechanical properties of hydroxyapatite ceramics prepared from Nile Tilapia (Oreochromis niloticus) bone and commercial powder for biomedical applications, Ceramics International, 47, 24, (2021), 34575-34584 https://doi.org/10.1016/j.ceramint.2021.08.372
  31. P. Scherrer, Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen, in: Kolloidchemie Ein Lehrbuch, Springer Berlin Heidelberg, Berlin, Heidelberg, 1912, https://doi.org/10.1007/978-3-662-33915-2_7
  32. Sandra M. Londoño-Restrepo, Mariana Herrera-Lara, Leon R. Bernal-Alvarez, Eric M. Rivera-Muñoz, Mario E. Rodriguez-García, In-situ XRD study of the crystal size transition of hydroxyapatite from swine bone, Ceramics International, 46, 15, (2020), 24454-24461 https://doi.org/10.1016/j.ceramint.2020.06.230
  33. S. Ramesh, N. S. Virik, L. T. Bang, A. Niakan, C. Y. Tan, J. Purbolaksono, Boon Kar Yap, W. D. Teng, Sintering behaviour of forsterite-doped hydroxyapatite ceramics, Ceramics–Silikáty, 59, 2, (2015), 181-186
  34. Onur Yontar, Mevlüt Gürbüz, Mechanical Properties of Dense Artificial Bone Fabricated by Powder Processing, International Journal of Multidisciplinary Studies and Innovative Technologies, 3, 1, (2019), 22-24
  35. Marta Trzaskowska, Vladyslav Vivcharenko, Agata Przekora, The Impact of Hydroxyapatite Sintering Temperature on Its Microstructural, Mechanical, and Biological Properties, International Journal of Molecular Sciences, 24, 6, (2023), 5083 https://doi.org/10.3390/ijms24065083
  36. Sheng Li, Jian-zhao Wang, Bing Yin, Zu-sheng Hu, Xiao-juan Zhang, Wei Wu, Guo-bin Liu, Ya-ke Liu, Lei Fu, Ying-ze Zhang, Atlas of Human Skeleton Hardness Obtained Using the Micro-indentation Technique, Orthopaedic Surgery, 13, 4, (2021), 1417-1422 https://doi.org/10.1111/os.12841
  37. Bing Yin, Jia-liang Guo, Jian-zhao Wang, Sheng Li, Ya-ke Liu, Ying-ze Zhang, Bone Material Properties of Human Phalanges Using Vickers Indentation, Orthopaedic Surgery, 11, 3, (2019), 487-492 https://doi.org/10.1111/os.12455
  38. Ying Cao, Tianshu Shi, Chen Jiao, Huixin Liang, Ruoyu Chen, Zongjun Tian, Anchao Zou, Youwen Yang, Zhen Wei, Changjiang Wang, Lida Shen, Fabrication and properties of zirconia/hydroxyapatite composite scaffold based on digital light processing, Ceramics International, 46, 2, (2020), 2300-2308 https://doi.org/10.1016/j.ceramint.2019.09.219
  39. Mariana F. Vassal, J. Nunes-Pereira, Sónia P. Miguel, Ilídio J. Correia, Abílio P. Silva, Microstructural, mechanical and biological properties of hydroxyapatite - CaZrO3 biocomposites, Ceramics International, 45, 7, Part A, (2019), 8195-8203 https://doi.org/10.1016/j.ceramint.2019.01.122
  40. Renata Nunes Jardim, Anderson Araújo Rocha, Alexandre Malta Rossi, Aline de Almeida Neves, Maristela Barbosa Portela, Ricardo Tadeu Lopes, Thais Maria Pires dos Santos, Yutao Xing, Eduardo Moreira da Silva, Fabrication and characterization of remineralizing dental composites containing hydroxyapatite nanoparticles, Journal of the Mechanical Behavior of Biomedical Materials, 109, (2020), 103817 https://doi.org/10.1016/j.jmbbm.2020.103817
  41. M. Aminzare, A. Eskandari, M. H. Baroonian, A. Berenov, Z. Razavi Hesabi, M. Taheri, S. K. Sadrnezhaad, Hydroxyapatite nanocomposites: Synthesis, sintering and mechanical properties, Ceramics International, 39, 3, (2013), 2197-2206 https://doi.org/10.1016/j.ceramint.2012.09.023

Last update:

No citation recorded.

Last update: 2025-05-03 01:03:17

No citation recorded.