skip to main content

Validation Method of the Cellulose Triacetate-Based Optode Membrane for Fe(III) Detection in Water Samples

1Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia

2Tropical Biopharmaca Research Center, IPB University, Bogor, Indonesia

Received: 28 Dec 2024; Revised: 8 Apr 2025; Accepted: 8 Apr 2025; Published: 30 Apr 2025.
Open Access Copyright 2025 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

Iron contamination in water is a threat to human health and the environment. This contamination requires a fast and efficient detection method. Method validation is integral to method development, ensuring alignment with the intended objectives. This research aims to validate a method for selective detection of Fe(III) based on cellulose triacetate (CTA) optode membrane. The optode membrane was prepared by mixing CTA, plasticizers, Aliquat-336, and thiocyanate as selective reagents. The validation of the optode membrane was evaluated based on validation performance parameters. The Fe(III) optode membrane detection demonstrated a linear response with a determination coefficient of 0.9972 within a concentration range of 0.1–4.0 mg/L, the detection limit of 0.0553 mg/L, quantitation limit of 0.1676 mg/L, precision 3.01%, intermediate precision of 3.03% and 3.01%, the accuracy of 101.62%. The optode membrane exhibited good selectivity with a value of -0.4580 and -0.2748 against Pb(II) and Cr(VI), respectively, sensitivity of 1.05 × 107 M-1 cm-1 and color formation stability %RSD of 3.14%. The application of real samples shows no significant difference between the UV-Vis spectrophotometry and optode membrane methods at a 95% confidence level (α = 0.05). The validation results offer a valuable perspective into whether this method can be adopted as a new approach or as an alternative to existing methods for cation analysis in water samples.

Fulltext View|Download
Keywords: Cellulose triacetate; Fe(III); Optode Membrane; Method Validation
Funding: Directorate General of Higher Education, Research, and Technology, Ministry under contract 027/E5/PG.02.00.PL/2024 of Education, Culture, Research, and Technology of the Republic of Indonesia under contract 027/E5/PG.02.00.PL/2024

Article Metrics:

  1. Marianne Wessling-Resnick, Excess iron: considerations related to development and early growth†‡, The American Journal of Clinical Nutrition, 106, (2017), 1600S-1605S https://doi.org/10.3945/ajcn.117.155879
  2. Vadugu Harish, Shaik Aslam, Shambhu Chouhan, Yuva Pratap, Shivani Lalotra, Iron toxicity in plants: A Review, International Journal of Environment and Climate Change, 13, 8, (2023), 1894-1900 https://doi.org/10.9734/ijecc/2023/v13i82145
  3. Allan de Marcos Lapaz, Camila Hatsu Pereira Yoshida, Pedro Henrique Gorni, Larisse de Freitas-Silva, Talita de Oliveira Araújo, Cleberson Ribeiro, Iron toxicity: effects on the plants and detoxification strategies, Acta Botanica Brasilica, 36, (2022), https://doi.org/10.1590/0102-33062021abb0131
  4. Jennyfer Miot, Karim Benzerara, Andreas Kappler, Investigating Microbe-Mineral Interactions: Recent Advances in X-Ray and Electron Microscopy and Redox-Sensitive Methods, Annual Review of Earth and Planetary Sciences, 42, (2014), 271-289 https://doi.org/10.1146/annurev-earth-050212-124110
  5. Lanbing Feng, Yun Zeng, Pan Wang, Na Duan, Haodong Ji, Xiao Zhao, A Mini-Review on the Use of Chelating or Reducing Agents to Improve Fe(II)-Fe(III) Cycles in Persulfate/Fe(II) Systems, Processes, 12, 11, (2024), 2361 https://doi.org/10.3390/pr12112361
  6. United States Environmental Protection Agency, in: USEPA (Ed.), USEPA, Washington, 2017,
  7. World Health Organization, Guidelines for drinking-water quality, World Health Organization, 2002,
  8. Bo Peng, Yingping Shen, Zhuantao Gao, Min Zhou, Yongjun Ma, Shengguo Zhao, Determination of total iron in water and foods by dispersive liquid–liquid microextraction coupled with microvolume UV–vis spectrophotometry, Food Chemistry, 176, (2015), 288-293 https://doi.org/10.1016/j.foodchem.2014.12.084
  9. Ana Flávia de Oliveira e Silva, Whocely Victor de Castro, Frank Pereira de Andrade, Development of spectrophotometric method for iron determination in fortified wheat and maize flours, Food Chemistry, 242, (2018), 205-210 https://doi.org/10.1016/j.foodchem.2017.08.110
  10. Jeferson M. dos Santos, Jucimara Kulek de Andrade, Fernanda Galvão, Maria L. Felsner, Optimization and validation of ultrasound-assisted extraction for the determination of micro and macro minerals in non-centrifugal sugar by F AAS, Food Chemistry, 292, (2019), 66-74 https://doi.org/10.1016/j.foodchem.2019.04.037
  11. Franciele Rovasi Adolfo, Paulo Cícero do Nascimento, Gabriela Camera Leal, Denise Bohrer, Carine Viana, Leandro Machado de Carvalho, Simultaneous determination of Fe and Ni in guarana (Paullinia cupana Kunth) by HR-CS GF AAS: Comparison of direct solid analysis and wet acid digestion procedures, Journal of Food Composition and Analysis, 88, (2020), 103459 https://doi.org/10.1016/j.jfca.2020.103459
  12. Susheel K. Mittal, Sonia Rana, Navneet Kaur, Craig E. Banks, A voltammetric method for Fe(iii) in blood serum using a screen-printed electrode modified with a Schiff base ionophore, Analyst, 143, 12, (2018), 2851-2861 https://doi.org/10.1039/C8AN00174J
  13. Somayeh Badakhshan, Saeid Ahmadzadeh, Anoushiravan Mohseni-Bandpei, Majid Aghasi, Amir Basiri, Potentiometric sensor for iron (III) quantitative determination: experimental and computational approaches, BMC Chemistry, 13, 1, (2019), 131 https://doi.org/10.1186/s13065-019-0648-x
  14. Yanyan Du, Min Chen, Yingxue Zhang, Feng Luo, Chunyan He, Meijin Li, Xi Chen, Determination of iron(III) based on the fluorescence quenching of rhodamine B derivative, Talanta, 106, (2013), 261-265 https://doi.org/10.1016/j.talanta.2012.10.078
  15. Süreyya Oğuz Tümay, Mahsa Haddad Irani-nezhad, Alireza Khataee, Design of novel anthracene-based fluorescence sensor for sensitive and selective determination of iron in real samples, Journal of Photochemistry and Photobiology A: Chemistry, 402, (2020), 112819 https://doi.org/10.1016/j.jphotochem.2020.112819
  16. Sidnei Oliveira Souza, Silvânio Silvério L. Costa, Bia Catarina T. Brum, Samir Hipólito Santos, Carlos Alexandre B. Garcia, Rennan Geovanny O. Araujo, Determination of nutrients in sugarcane juice using slurry sampling and detection by ICP OES, Food Chemistry, 273, (2019), 57-63 https://doi.org/10.1016/j.foodchem.2018.03.060
  17. Iago J. S. da Silva, André F. Lavorante, Ana P. S. Paim, Maria J. da Silva, Microwave-assisted digestion employing diluted nitric acid for mineral determination in rice by ICP OES, Food Chemistry, 319, (2020), 126435 https://doi.org/10.1016/j.foodchem.2020.126435
  18. Karina Kocot, Beata Zawisza, Rafal Sitko, Dispersive liquid–liquid microextraction using diethyldithiocarbamate as a chelating agent and the dried-spot technique for the determination of Fe, Co, Ni, Cu, Zn, Se and Pb by energy-dispersive X-ray fluorescence spectrometry, Spectrochimica Acta Part B: Atomic Spectroscopy, 73, (2012), 79-83 https://doi.org/10.1016/j.sab.2012.05.003
  19. Vinicius Câmara Costa, Fábio Alan Carqueija Amorim, Diego Victor de Babos, Edenir Rodrigues Pereira-Filho, Direct determination of Ca, K, Mg, Na, P, S, Fe and Zn in bivalve mollusks by wavelength dispersive X-ray fluorescence (WDXRF) and laser-induced breakdown spectroscopy (LIBS), Food Chemistry, 273, (2019), 91-98 https://doi.org/10.1016/j.foodchem.2018.02.016
  20. A. R. Firooz, M. Movahedi, H. Sabzyan, A new selective optode for the determination of iron(III) based on the immobilization of morin on triacetylcellulose: A combined experimental and computational study, Materials Science and Engineering: C, 94, (2019), 410-416 https://doi.org/10.1016/j.msec.2018.09.031
  21. Y. M. Scindia, A. K. Pandey, A. V. R. Reddy, S. B. Manohar, Chemically selective membrane optode for Cr(VI) determination in aqueous samples, Analytica Chimica Acta, 515, 2, (2004), 311-321 https://doi.org/10.1016/j.aca.2004.03.074
  22. Klaus Koren, Silvia E. Zieger, Optode Based Chemical Imaging—Possibilities, Challenges, and New Avenues in Multidimensional Optical Sensing, ACS Sensors, 6, 5, (2021), 1671-1680 https://doi.org/10.1021/acssensors.1c00480
  23. Jeniffer García-Beleño, Eduardo Rodríguez de San Miguel, Integration of Response Surface Methodology (RSM) and Principal Component Analysis (PCA) as an Optimization Tool for Polymer Inclusion Membrane Based-Optodes Designed for Hg(II), Cd(II), and Pb(II), Membranes, 11, 4, (2021), 288 https://doi.org/10.3390/membranes11040288
  24. Hamid M. Shaikh, Arfat Anis, Anesh Manjaly Poulose, Saeed M. Al-Zahrani, Niyaz Ahamad Madhar, Abdullah Alhamidi, Saleh Husam Aldeligan, Faisal S. Alsubaie, Synthesis and Characterization of Cellulose Triacetate Obtained from Date Palm (Phoenix dactylifera L.) Trunk Mesh-Derived Cellulose, Molecules, 27, 4, (2022), 1434 https://doi.org/10.3390/molecules27041434
  25. M. A. Martín-Alfonso, José F. Rubio-Valle, Gethzemani M. Estrada-Villegas, Margarita Sánchez-Domínguez, José E. Martín-Alfonso, Exploring Cellulose Triacetate Nanofibers as Sustainable Structuring Agent for Castor Oil: Formulation Design and Rheological Insights, Gels, 10, 4, (2024), 221 https://doi.org/10.3390/gels10040221
  26. Zulhan Arif, Sri Sugiarti, Eti Rohaeti, Irmanida Batubara, A Sensor (Optode) Based on Cellulose Triacetate Membrane for Fe(III) Detection in Water Samples, Chemistry, 6, 1, (2024), 81-94 https://doi.org/10.3390/chemistry6010005
  27. Tentu Nageswara Rao, Validation of Analytical Methods, in: M.T. Stauffer (Ed.) Calibration and Validation of Analytical Methods - A Sampling of Current Approaches, IntechOpen, Rijeka, 2018, https://doi.org/10.5772/intechopen.72087
  28. The International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use, in, 2022,
  29. AOAC International, Official Methods of Analysis of AOAC International Rockville, 2016
  30. Anshul Yadav, Pankaj D. Indurkar, Gas Sensor Applications in Water Quality Monitoring and Maintenance, Water Conservation Science and Engineering, 6, 3, (2021), 175-190 https://doi.org/10.1007/s41101-021-00108-x
  31. M. Reza Baezzat, M. Karimi, Design and Evaluation of a New Optode Based on Immobilization of Indophenol on Triacetylcellulose Membrane for Determination of Nickel, International Journal of ChemTech Research, 5, 5, (2013), 2503-2507
  32. Faiz Bukhari Mohd Suah, Musa Ahmad, Lee Yook Heng, A novel polymer inclusion membranes based optode for sensitive determination of Al3+ ions, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 144, (2015), 81-87 https://doi.org/10.1016/j.saa.2015.02.068
  33. C. L. Luke, New spectrophotometric thiocyanate determination of iron in metals, alloys, acids and salts, Analytica Chimica Acta, 36, (1966), 122-129 https://doi.org/10.1016/0003-2670(66)80013-2
  34. Kazuhiko Ozutsumi, Makoto Kurihara, Tatsuo Miyazawa, Takuji Kawashima, Complexation of Iron(III) with Thiocyanate Ions in Aqueous Solution, Analytical Sciences, 8, 4, (1992), 521-526 https://doi.org/10.2116/analsci.8.521
  35. Chitra Verma, Kavita Tapadia, Anupam Bala Soni, Determination of iron (III) in food, biological and environmental samples, Food Chemistry, 221, (2017), 1415-1420 https://doi.org/10.1016/j.foodchem.2016.11.011
  36. R. K. Mishra, P. C. Rout, K. Sarangi, K. C. Nathsarma, Solvent extraction of Fe(III) from the chloride leach liquor of low grade iron ore tailings using Aliquat 336, Hydrometallurgy, 108, 1, (2011), 93-99 https://doi.org/10.1016/j.hydromet.2011.03.003
  37. Cristina Monica Mirea, Ioana Diaconu, Ecaterina Anca Serban, Elena Ruse, Gheorghe Nechifor, The Transport of Iron (III) Through Bulk Liquid Membrane Using Aliquat 336 As Carrier, Revista de Chimie, 67, 5, (2016), 838-841
  38. Nurfitriyana Nurfitriyana, Najma Annuria Fithri, Rini Yanuarti, Analisis Interaksi Kimia Fourier Transform Infrared (FTIR) Tablet Gastrorentif Ekstrak Daun Petai (Parkia speciosa Hassk) dengan Polimer HPMC-K4M dan Kitosan, ISTA Online Technologi Journal, 3, 2, (2022), 27-33 https://doi.org/10.62702/ion.v3i2.69
  39. David Harvey, Analytical Chemistry (2.1), McGraw-Hill Companies, New York, 2016,
  40. Nursanti Angger Ratnawati, Agung Tri Prasetya, Endah Fitriani Rahayu, Validasi Metode Pengujian Logam Berat Timbal (Pb) dengan Destruksi Basah Menggunakan FAAS dalam Sedimen Sungai Banjir Kanal Barat Semarang, Indonesian Journal of Chemical Science, 8, 1, (2019), 60-68
  41. M. Valcárcel, A. Gómez-Hens, S. Rubio, Selectivity in analytical chemistry revisited, TrAC Trends in Analytical Chemistry, 20, 8, (2001), 386-393 https://doi.org/10.1016/S0165-9936(01)00092-9

Last update:

No citation recorded.

Last update: 2025-05-22 13:19:00

No citation recorded.