skip to main content

Lead Isotope Ratio Optimization using Q-ICP-MS for Volcanic Rocks

Center for Geological Survey, Geological Agency, Ministry of Energy and Mineral Resources, Bandung, Indonesia

Received: 16 Dec 2024; Revised: 22 May 2025; Accepted: 26 May 2025; Published: 10 Jul 2025.
Open Access Copyright 2025 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Optimization of Pb isotope ratio analysis in six types of Indonesian volcanic rocks using Q-ICP-MS
Abstract

Lead isotope ratios are a valuable tool for tracing the origin and evolution of volcanic rocks, supporting exploration of critical metals for renewable energy. While multi-collector and thermal ionization mass spectrometers offer superior precision, they are costly and time-consuming. For rapid, preliminary analyses of lead-rich samples, quadrupole mass spectrometry can provide sufficient results with appropriate optimization. This study aims to optimize the measurement of lead isotope ratios using quadrupole ICP-MS (Q-ICP-MS) for several volcanic rocks from Indonesia. After multivariate optimization of the main operating conditions (dwell time 1-3 ms, sweep number 2000-4000, and replicate 2-6), the isotopic ratios were measured with an internal precision of 0.05-0.9 %RSD; the accuracy is 99.97-103.79 %, and reproducibility is 8.8-10.5 Horwitz value. Our measurements agree well with the reported data of certified reference material AGV-2 and within analytical uncertainties.

Fulltext View|Download
Keywords: earth science; geochemistry; lead isotope ratio; mass spectrometry; optimization
Funding: Geological Agency, Ministry of Energy and Mineral Resources

Article Metrics:

  1. David Huston, Jens Gutzmer, Isotopes in Economic Geology, Metallogenesis and Exploration, Springer Nature, 2023,
  2. G. Faure, T.M. Mensing, Isotopes: Principles and Applications, Wiley, 2005,
  3. C. J. Hawkesworth, A. I. S. Kemp, Evolution of the continental crust, Nature, 443, 7113, (2006), 811-817 https://doi.org/10.1038/nature05191
  4. Sarah M. Hayes, Erin A. McCullough, Critical minerals: A review of elemental trends in comprehensive criticality studies, Resources Policy, 59, (2018), 192-199 https://doi.org/10.1016/j.resourpol.2018.06.015
  5. David L. Huston, David C. Champion, Applications of Lead Isotopes to Ore Geology, Metallogenesis and Exploration, in: D. Huston, J. Gutzmer (Eds.) Isotopes in Economic Geology, Metallogenesis and Exploration, Springer International Publishing, Cham, 2023, https://doi.org/10.1007/978-3-031-27897-6_6
  6. J. Sabine Becker, Recent developments in isotope analysis by advanced mass spectrometric techniques, Journal of Analytical Atomic Spectrometry, 20, 11, (2005), 1173-1184 https://doi.org/10.1039/B508895J
  7. Gerald Schultheis, Thomas Prohaska, Gerhard Stingeder, Katharina Dietrich, Dubravka Jembrih-Simbürger, Manfred Schreiner, Characterisation of ancient and art nouveau glass samples by Pb isotopic analysis using laser ablation coupled to a magnetic sector field inductively coupled plasma mass spectrometer (LA-ICP-SF-MS), Journal of Analytical Atomic Spectrometry, 19, 7, (2004), 838-843 https://doi.org/10.1039/B403974B
  8. Johanna Sabine Becker, Inorganic Mass Spectrometry: Principles and Applications, John Wiley & Sons, Ltd, 2007, ^ https://doi.org/10.1002/9780470517222
  9. Naoki Furuta, Optimization of the mass scanning rate for the determination of lead isotope ratios using an inductively coupled plasma mass spectrometer, Journal of Analytical Atomic Spectrometry, 6, 3, (1991), 199-203 https://doi.org/10.1039/JA9910600199
  10. Christophe R. Quétel, Bertrand Thomas, Olivier F. X. Donard, Francis E. Grousset, Factorial optimization of data acquisition factors for lead isotope ratio determination by inductively coupled plasma mass spectrometry, Spectrochimica Acta Part B: Atomic Spectroscopy, 52, 2, (1997), 177-187 https://doi.org/10.1016/S0584-8547(96)01587-X
  11. Andrea Bazzano, Marco Grotti, Determination of lead isotope ratios in environmental matrices by quadrupole ICP-MS working at low sample consumption rates, Journal of Analytical Atomic Spectrometry, 29, 5, (2014), 926-933 https://doi.org/10.1039/C3JA50388G
  12. Zhiwei Wu, Wei Guo, Lanlan Jin, Shenghong Hu, Effect of signal acquisition mode on isotope ratio precision and accuracy in ICP-quadrupole-MS analysis, Microchemical Journal, 142, (2018), 251-257 https://doi.org/10.1016/j.microc.2018.07.002
  13. Jay M. Thompson, Leonid V. Danyushevsky, Olga Borovinskaya, Martin Tanner, Time-of-flight ICP-MS laser ablation zircon geochronology: assessment and comparison against quadrupole ICP-MS, Journal of Analytical Atomic Spectrometry, 35, 10, (2020), 2282-2297 https://doi.org/10.1039/D0JA00252F
  14. Abida Usman, E. Louise Ander, Elizabeth H. Bailey, Simon Nelms, Vanessa Pashley, Scott D. Young, Simon R. Chenery, Optimisation of a current generation ICP-QMS and benchmarking against MC-ICP-MS spectrometry for the determination of lead isotope ratios in environmental samples, Journal of Analytical Atomic Spectrometry, 33, 12, (2018), 2184-2194 https://doi.org/10.1039/C8JA00290H
  15. J. Moser, W. Wegscheider, T. Meisel, N. Fellner, An uncertainty budget for trace analysis by isotope-dilution ICP-MS with proper consideration of correlation, Analytical and Bioanalytical Chemistry, 377, 1, (2003), 97-110 https://doi.org/10.1007/s00216-003-2028-5
  16. Marco Grotti, Maria Alessia Vecchio, Dalia Gobbato, Matilde Mataloni, Francisco Ardini, Precise determination of 204Pb-based isotopic ratios in environmental samples by quadrupole inductively coupled plasma mass spectrometry, Journal of Analytical Atomic Spectrometry, 38, 5, (2023), 1057-1064 https://doi.org/10.1039/d2ja00424k
  17. Heru Agung Saputra, Anni Anggraeni, Abdul Mutalib, Husein Hernandi Bahti, Development of a Fast Simultaneous Analysis Method for Determination of Middle Rare-Earth Elements in Monazite Samples, Jurnal Kimia Sains dan Aplikasi, 24, 5, (2021), 177-184 https://doi.org/10.14710/jksa.24.5.177-184
  18. U.S. Geological Survey, Descriptions and Analyses of Eight New USGS Rock Standards, 1976 https://doi.org/10.3133/pp840
  19. José Marcus Godoy, Maria Luiza D. P. Godoy, Cláudia C. Aronne, Application of inductively coupled plasma quadrupole mass spectrometry for the determination of monazite ages by lead isotope ratios, Journal of the Brazilian Chemical Society, 18, (2007), https://doi.org/10.1590/S0103-50532007000500014
  20. Brian Gulson, George D. Kamenov, William Manton, Michael Rabinowitz, Concerns about Quadrupole ICP-MS Lead Isotopic Data and Interpretations in the Environment and Health Fields, International Journal of Environmental Research and Public Health, 15, 4, (2018), 723 https://doi.org/10.3390/ijerph15040723
  21. Thermo Fisher Scientific, in, Thermo Fisher Scientific Inc., 2012,
  22. Glenn David Woods, Lead isotope analysis: Removal of 204Hg isobaric interference from 204Pb using ICP-QQQ in MS/MS mode, Agilent Technologies, LDA UK Ltd., Stockport, UK, 2019
  23. AOAC International, Guidelines for Standard Method Performance Requirements, in: G.W. Latimer, Jr., G.W. Latimer, Jr. (Eds.) Official Methods of Analysis of AOAC International, Oxford University Press, 2023, https://doi.org/10.1093/9780197610145.005.006
  24. European Virtual Institute for Speciation Analysis (EVISA), Dwell time,
  25. Robert Thomas, A Beginner's Guide to ICP-MS. Part XI—Peak Measurement Protocol, Spectroscopy, 17, 7, (2002), 28-35
  26. Niels C. Munksgaard, Grant J. Batterham, David L. Parry, Lead isotope ratios determined by ICP-MS: Investigation of anthropogenic lead in seawater and sediment from the Gulf of Carpentaria, Australia, Marine Pollution Bulletin, 36, 7, (1998), 527-534 https://doi.org/10.1016/S0025-326X(98)00011-3
  27. Thomas Ulrich, Balz S. Kamber, Jon D. Woodhead, Lizzy A. Spencer, Long-Term Observations of Isotope Ratio Accuracy and Reproducibility Using Quadrupole ICP-MS, Geostandards and Geoanalytical Research, 34, 2, (2010), 161-174 https://doi.org/10.1111/j.1751-908X.2010.00046.x
  28. Robert J. Thomas, Practical Guide to ICP-MS and Other Atomic Spectroscopy Techniques: A Tutorial for Beginners, CRC Press, 2023,
  29. Seung-Gu Lee, Kyung-Seok Ko, Development of an analytical method for accurate and precise determination of rare earth element concentrations in geological materials using an MC-ICP-MS and group separation, Frontiers in Chemistry, Volume 10 - 2022, (2023), https://doi.org/10.3389/fchem.2022.906160
  30. Klaus G. Heumann, Stefan M. Gallus, Gunther Rädlinger, Jochen Vogl, Precision and accuracy in isotope ratio measurements by plasma source mass spectrometry, Journal of Analytical Atomic Spectrometry, 13, 9, (1998), 1001-1008 https://doi.org/10.1039/a801965g
  31. Lu Yang, Accurate and precise determination of isotopic ratios by MC-ICP-MS: A review, Mass Spectrometry Reviews, 28, 6, (2009), 990-1011 https://doi.org/10.1002/mas.20251
  32. Royal Society of Chemistry, Measurement, accuracy and precision, Royal Society of Chemistry, 2016
  33. OpenStaxCollege, Measurement Uncertainty, Accuracy, and Precision, in: Chemistry, UH PressBooks, Hawai’i, 2014,
  34. Amanda J. Carroll, Know Your Techniques: Accuracy, Precision, and Using the Right Instrument, American Chemical Society, 2022
  35. Héctor Hernández-Mendoza, Nancy Lara-Almazán, Abraham Kuri-Cruz, Elizabeth Teresita Romero-Guzmán, María Judith Ríos-Lugo, Quadrupole inductively coupled plasma mass spectrometry and sector field ICP-MS: a comparison of analytical methods for the quantification of As, Pb, Cu, Cd, Zn, and U in drinking water, Physical Sciences Reviews, 8, 5, (2023), 663-678 https://doi.org/10.1515/psr-2020-0121
  36. D. Stone, in: Part 1 – Instrumental Analysis with Excel: The Basics, Department of Chemistry, University of Toronto, 2007, https://sites.chem.utoronto.ca/chemistry/coursenotes/analsci/stats/AimStats.html
  37. Tomy Alvin Rivai, Yoshiaki Kon, Kenzo Sanematsu, Syafrizal, Pb-isotope systematics at the Sopokomil shale-hosted massive sulfide deposit, North Sumatra, Indonesia, Journal of Asian Earth Sciences, 234, (2022), 105275 https://doi.org/10.1016/j.jseaes.2022.105275
  38. Jinhong Xu, Zhengwei Zhang, Chengquan Wu, Qiao Shu, Chaofei Zheng, Xiyao Li, Ziru Jin, Mineralogy, fluid inclusions, and S–Pb isotope geochemistry study of the Tuboh Pb–Zn–Ag polymetallic deposit, Lubuklinggau, Sumatra, Indonesia, Ore Geology Reviews, 112, (2019), 103032 https://doi.org/10.1016/j.oregeorev.2019.103032
  39. Xi-Yao Li, Zheng-Wei Zhang, Cheng-Quan Wu, Jin-Hong Xu, Zi-Ru Jin, Geology and geochemistry of Gunung Subang gold deposit, Tanggeung, Cianjur, West Java, Indonesia, Ore Geology Reviews, 113, (2019), 103060 https://doi.org/10.1016/j.oregeorev.2019.103060
  40. Chengquan Wu, Zhengwei Zhang, Mega Fatimah Rosana, Qiao Shu, Chaofei Zheng, Jinhong Xu, Xiyao Li, Ziru Jin, The continental crust contributes to magmatic hydrothermal gold deposit in Ciemas, West Java, Indonesia: Constraints from Hf isotopes of zircons and in situ Pb isotopes of sulfides, Ore Geology Reviews, 112, (2019), 103010 https://doi.org/10.1016/j.oregeorev.2019.103010
  41. Svetlana G. Tessalina, Richard J. Herrington, Rex N. Taylor, Krister Sundblad, Valery V. Maslennikov, Jean-Jacques Orgeval, Lead isotopic systematics of massive sulphide deposits in the Urals: Applications for geodynamic setting and metal sources, Ore Geology Reviews, 72, (2016), 22-36 https://doi.org/10.1016/j.oregeorev.2015.06.016
  42. J. A. Wolff, F. C. Ramos, Processes in Caldera-Forming High-Silica Rhyolite Magma: Rb–Sr and Pb Isotope Systematics of the Otowi Member of the Bandelier Tuff, Valles Caldera, New Mexico, USA, Journal of Petrology, 55, 2, (2013), 345-375 https://doi.org/10.1093/petrology/egt070
  43. Behnam Shafiei, Lead isotope signatures of the igneous rocks and porphyry copper deposits from the Kerman Cenozoic magmatic arc (SE Iran), and their magmatic-metallogenetic implications, Ore Geology Reviews, 38, 1, (2010), 27-36 https://doi.org/10.1016/j.oregeorev.2010.05.004
  44. Kenneth D. Collerson, Balz S. Kamber, Ronny Schoenberg, Applications of accurate, high-precision Pb isotope ratio measurement by multi-collector ICP-MS, Chemical Geology, 188, 1, (2002), 65-83 https://doi.org/10.1016/S0009-2541(02)00059-1
  45. Anuar Ismail, Azman A. Ghani, Mohd Rozi Umor, Noran Alwakhir Shaarani, Field relation, petrochemistry and classification of the volcanic rocks from the eastern part of Tioman Island, Pahang, Geological Society of Malaysia, Bulletin 46, (2003), 415-419
  46. Craig A. Chesner, Petrogenesis of the Toba Tuffs, Sumatra, Indonesia, Journal of Petrology, 39, 3, (1998), 397-438 https://doi.org/10.1093/petroj/39.3.397
  47. Ronaldo Irzon, Ildrem Syafri, Johannes Hutabarat, Purnama Sendjaja, REE Comparison Between Muncung Granite Samples and their Weathering Products, Lingga Regency, Riau Islands, Indonesian Journal on Geoscience, 3, 3, (2016), 149-161 https://doi.org/10.17014/ijog.3.3.149-161
  48. Ewa Pruszkowski, Lead and Strontium Isotope Ratio Analysis Using the NexION 5000 ICP-MS, in: ICP - Mass Spectrometry, PerkinElmer, Inc., USA, 2022,

Last update:

No citation recorded.

Last update: 2025-07-12 18:22:52

No citation recorded.