skip to main content

FORECASTING FARMER EXCHANGE RATE IN CENTRAL JAVA PROVINCE USING VECTOR INTEGRATED MOVING AVERAGE

*Trimono Trimono  -  Magister of Mathematics, Institut Teknologi Bandung, Indonesia
Abdulah Sonhaji  -  Program Study of Mathematics, Institut Teknologi Bandung, Indonesia
Utriweni Mukhaiyar  -  Program Study of Mathematics, Institut Teknologi Bandung, Indonesia
Open Access Copyright (c) 2020 MEDIA STATISTIKA under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Farmer Exchange Rate (FER) is an indicator that can be used to measure the level of farmers welfare. For every agriculture sector, FER is affected by the historical price of harvest from the corresponding sector and historical prices of other agriculture sectors. In Central Java Province, rice & palawija, horticulture, and fisheries are the largest agriculture sectors which is the main livelihood for most of the population. FER forecasting is a crucial thing to determine the level of farmers welfare in the future. One method that can be used to predict the value of a variable that is influenced by the historical value of several variables is Vector Time Series. An empirical study was conducted using FER data from the rice & palawija, horticulture and fisheries sectors for January 2011-June 2017 in Central Java Province. The results obtained show that by using the VIMA(2.1) model, the FER prediction was very accurate, with MAPE values were 1.91% (rice & palawija sector), 2.44% (horticulture sector), and 2.18% (fisheries sector).
Fulltext View|Download
Keywords: Farmer Exchange Rate; Vector Time Series; VIMA(2,1); MAPE

Article Metrics:

  1. Ayudhiah, M. P., Bahri, S., & Fitriyani, N. (2020). Peramalan Indeks Harga Konsumen Kota Mataram Menggunakan Vector Autoregressive Integrated Moving Average. Eigen Mathematics Journal, 1(2), 1–8. https://doi.org/10.29303/emj.v1i2.61
  2. BPS Provinsi Jawa Tengah. (2020). Jawa Tengah Province in Figure 2020. In BPS Jawa Tengah 2020. BPS Jawa Tengah. https://ngawikab.bps.go.id/publikasi.html
  3. Charles, A., Darné, O., & Tripier, F. (2015). Are Unit Root Tests Useful in the Debate over the (non) Stationarity of Hours Worked? Cambridge University Press (CUP), 19(1), 167–188
  4. Chen, B., Choi, J., & Escanciano, J. C. (2017). Testing for Fundamental Vector Moving Average Representations. Quantitative Economics, 8(1), 149–180. https://doi.org/ 10.3982/qe393
  5. Desvina, A. P., & Meijer, O. I. (2018). Penerapan Model ARCH/GARCH untuk Peramalan Nilai Tukar Petani. Jurnal Sains Matematika Dan Statistika, 4(1), 43–54
  6. Dias, G. F., & Kapetanios, G. (2014). Estimation and forecasting in vector autoregressive moving average models for rich datasets. Journal of Econometrics, 202(1), 75–91. https://doi.org/10.1016/j.jeconom.2017.06.022
  7. Istiqomah, W., & Darsyah, M. Y. (2018). Efektivitas Metode Arima Dan Exponential Smoothing Untuk Meramalkan Nilai Tukar Petani Di Jawa Tengah Effectiveness of the Arima Method and Exponential Smoothing to Predict Farmer Exchange Rates in Central Java. Prosiding Seminar Nasional Mahasiswa Unimus, 1(1), 343–350
  8. Keumala, C. M., & Zainuddin, Z. (2018). Indikator Kesejahteraan Petani melalui Nilai Tukar Petani ( NTP ) dan Pembiayaan Syariah sebagai Solusi. Economica: Jurnal Ekonomi Islam, 9(1), 129–149
  9. Martina, & Praza, R. (2018). Analisis Tingkat Kesejahteraan Petani Padi Sawah di Kabupaten Aceh Utara. Jurnal AGRIFO, 3(2), 27–34
  10. Maruddani, D. A. I., & Trimono. (2018). Modeling Stock Prices in a Portfolio using Multidimensional Geometric Brownian Motion. Journal of Physics: Conference Series, 1025(1). https://doi.org/10.1088/1742-6596/1025/1/012122
  11. Moreno, J. J. M., Pol, A. P., Abad, A. S., & Blasco, B. C. (2013). El índice R-MAPE como medida resistente del ajuste en la previsiońn. Psicothema, 25(4), 500–506. https://doi.org/10.7334/psicothema2013.23
  12. Nirmala, A., Hanani, N., & Muhaimin, A. (2016). Analisis Faktor Faktor yang Mempengaruhi Nilai Tukar Petani Tanaman Pangan di Kabupaten Jombang. Habitat, 27(2), 66–71. https://doi.org/10.21776/ub.habitat.2016.027.2.8
  13. Putri, C. K., & Noor, T. I. (2018). Analisis Pendapatan dan Tingkat Kesejahteraan Rumah Tangga Petani Padi Sawah Berdasarkan Luas Lahan di Desa Sindangsari, Kecamatan Banjarsari, Kabupaten Ciamis, Provinsi Jawa Barat. Jurnal Ilmiah Mahasiswa Agroinfo Galuh, 4(3), 927–935
  14. R. Free Software Foundation’s GNU General Public License. (2020)
  15. Rachmat, M. (2013). Nilai Tukar Petani: Konsep, Pengukuran dan Relevansinya sebagai Indikator Kesejahteraan Petani. Forum Penelitian Agro Ekonomi, 31(2), 111. https://doi.org/10.21082/fae.v31n2.2013.111-122
  16. Setiawan, R. A. P., Noor, T. I., Sulistyowati, L., & Setiawan, I. (2018). Analisis Tingkat Kesejahteraan Petani Kedelai dengan Menggunakan Pendekatan Nilai Tukar Petani (NTP) dan Nilai Tukar Pendapatan Rumah Tangga Petani (NTPRP). Jurnal Agribisnis Terpadu, 12(2), 178–189. https://jurnal.untirta.ac.id/index.php/jat/ article/download/6779/4702
  17. Simionescu, M. (2013). The Use of VARMA Models in Forecasting Macroeconomic Indicators. Economics and Sociology, 6(2), 94–102. https://doi.org/10.14254/2071-789X.2013/6-2/9
  18. Wei, W. W. S. (2006). Tme Series Analysis, Univariate and Multivariate Methods. Addison Wesley Publishing Company. https://doi.org/10.2307/1269015
  19. Zadrozny, P. A., & Chen, B. (2019). Weighted-Covariance Factor Decomposition of Varma Models Applied to Forecasting Quarterly U.S. Real GDP at Monthly Intervals. Journal of Time Series Analysis, 40(6), 968–986. https://doi.org/10.1111/jtsa.12506
  20. Zhao, X., & Qian, G. (2014). On Multivariate Time Series Model Selection Involving Many Candidate VAR Models. European Journal of Pure and Applied Mathematics, 7(1), 1–21

Last update:

  1. FUZZY VECTOR AUTOREGRESSION FOR FORECASTING FARMER EXCHANGE RATE IN CENTRAL JAVA PROVINCE

    Nurhayadi Nurhayadi. MEDIA STATISTIKA, 15 (1), 2022. doi: 10.14710/medstat.15.1.94-103
  2. FORECASTING STOCK PRICES ON THE LQ45 INDEX USING THE VARIMAX METHOD

    Dinul Darma Atmaja, Widowati Widowati, Budi Warsito. MEDIA STATISTIKA, 14 (1), 2021. doi: 10.14710/medstat.14.1.98-107
  3. MODELING OF WORLD CRUDE OIL PRICE BASED ON PULSE FUNCTION INTERVENTION ANALYSIS APPROACH

    Netha Aliffia, Sediono Sediono, Suliyanto Suliyanto, M. Fariz Fadillah Mardianto, Dita Amelia. MEDIA STATISTIKA, 16 (2), 2024. doi: 10.14710/medstat.16.2.136-147

Last update: 2024-09-12 12:45:14

No citation recorded.