skip to main content

EXPLORE THE DETERMINANTS OF CUSTOMERS TIME TO PAY HOUSE OWNERSHIP LOAN ON DATA WITH HIGH MULTICOLLINEARITY WITH PCA-COX REGRESSION

*Rangga Ramadhan  -  Department of Statistics, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia
Adfi Bio Fimba  -  Department of Statistics, Faculty of Mathematics and Natural Sciences, Brawijaya University, Indonesia
Adji Achmad Rinaldo Fernandes  -  Department of Statistics, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia
Solimun Solimun  -  Department of Statistics, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia
Fachira Haneinanda Junianto  -  Department of Statistics, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia
Devi Veda Amanda  -  Department of Statistics, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia
Rauzan Sumara  -  Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
Open Access Copyright (c) 2024 MEDIA STATISTIKA under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
One of the models in survival analysis is the Cox proportional hazards model. This method ignores assumptions regarding the distribution of survival times studied. If there are indications of multicollinearity in data handling, one way that can be done is to use PCA (Principal Component Analysis). PCA-Cox regression is a combination of survival analysis and PCA which can be an alternative in analyzing multicollinearity survival data. The large number of cases of bad credit means that customers must be careful in providing credit to prospective customers. Character, capacity, capital and collateral variables are thought to influence the length of time customers pay house ownership loans at the bank. The data used is secondary data (n=100) regarding the assessment of character variables, capacity, capital and collateral, credit collectibility, and time to pay customer house ownership loans at the bank. The results of the analysis using PCA-Cox regression show that the variables character, capacity, capital and collateral have a significant effect on the length of house ownership loan payment time for Bank X customers. The originality of this research is the use of the PCA-Cox regression integration model in bank credit risk analysis.
Fulltext View|Download
Keywords: Survival Analysis; Credit Collectability; PCA; Time to Pay Credit

Article Metrics:

  1. Ardani, N. W. S., & Herawati, N. T. (2021). Pengaruh Penerapan Prinsip 5C Dan Sistem Pengendalian Internal Terhadap Efektivitas Pemberian Kredit Pada Lembaga Pekreditan Desa (LPD) Di Kabupaten Gianyar. JIMAT (Jurnal Ilmiah Mahasiswa Akuntansi) Undiksha, 12(2), 547–556
  2. https://doi.org/10.23887/JIMAT.V12I2.30302
  3. Bair, E., Hastie, T., Paul, D., & Tibshirani, R. (2006). Prediction by Supervised Principal Components. Journal of the American Statistical Association, 101(473), 119–137. https://doi.org/10.1198/016214505000000628
  4. Candès, E. J., Li, X., Ma, Y., & Wright, J. (2011). Robust Principal Component Analysis. Journal of the ACM, 58(3), 1–37. https://doi.org/10.1145/1970392.1970395
  5. Fernandes, A. A. R., & Solimun. (2014). Comparative Method in PCA and PLS Cox Regression to Solve Multicollinearity. Global Journal of Pure and Applied Mathematics, 10, 581–590
  6. Fernandes, A. A. R., & Solimun. (2016). Pemodelan Statistika Pada Analisis Reliabilitas dan Survival
  7. https://books.google.com/books?hl=id&lr=&id=dHhNDwAAQBAJ&oi=fnd&pg=PR5&dq=fernandes+solimun+pemodelan+statistika+pada+analisis+reliabilitas&ots=9Pqu34LmOm&sig=nKRtQa5arXSfTUdDVWEW6zA451Q
  8. George, B., Seals, S., & Aban, I. (2014). Survival Analysis and Regression Models. Journal of Nuclear Cardiology, 21(4), 686–694. https://doi.org/10.1007/S12350-014-9908-2
  9. Katzman, J. L., Shaham, U., Cloninger, A., Bates, J., Jiang, T., & Kluger, Y. (2018). DeepSurv: Personalized Treatment Recommender System using a Cox Proportional Hazards Deep Neural Network. BMC Medical Research Methodology, 18(1), 1–12. https://doi.org/10.1186/S12874-018-0482-1/FIGURES/6
  10. Kawi, Y. N., & Purwono, Y. (2022). Aplikasi Metode Accelerated Failure Time (AFT): Analisis Risiko Prepayment pada Kredit Kendaraan Bermotor. Journal of Management and Bussines (JOMB), 4(1), 234-252. https://doi.org/10.31539/jomb.v4i1.3677
  11. Kleinbaum, D. G., & Klein, M. (2005). Survival Analysis. New York: Springer. https://doi.org/10.1007/0-387-29150-4
  12. Lawless, J. F. (1982). Statistical Models and Methods for Lifetime Data (Wiley Series in Probability & Mathematical Statistics). United States: John Wiley & Sons. https://books.google.com/books/about/Statistical_Models_and_Methods_for_Lifet.html?hl=id&id=-hrvAAAAMAAJ
  13. Lin, D., Banjevic, D., & Jardine, A. K. S. (2006). Using Principal Components in a Proportional Hazards Model with Applications in Condition-Based Maintenance. Journal of the Operational Research Society, 57(8), 910–919. https://doi.org/10.1057/PALGRAVE.JORS.2602058
  14. Mardhiah, K., Wan-Arfah, N., Naing, N., Hassan, M., & Chan, H. K. (2022). Comparison of Cox Proportional Hazards Model, Cox Proportional Hazards with Time-Varying Coefficients Model, and Lognormal Accelerated Failure Time Model: Application in Time to Event Analysis of Melioidosis Patients. Asian Pacific Journal of Tropical Medicine, 15(3), 128–134. https://doi.org/10.4103/1995-7645.340568
  15. Maxwell, O., Chukwudike, C. N., Chinedu, O. V., Valentine, C. O., & Paul, O. C. (2019). Comparison of Different Parametric Methods in Handling Critical Multicollinearity: Monte Carlo Simulation Study. Asian Journal of Probability and Statistics, 3(2), 1–16. https://doi.org/10.9734/ajpas/2019/v3i230085
  16. OJK. (2019). Peraturan Otoritas Jasa Keuangan Nomor 40/POJK.03/2019
  17. Portal Informasi Indonesia. (2022). Indonesia.go.id - Rumah Layak agar Warga Sehat dan Produktif. https://indonesia.go.id/kategori/sosial/3971/rumah-layak-agar-warga-sehat-dan-produktif
  18. Pourhoseingholi, M. A., Hajizadeh, E., Dehkordi, B. M., Safaee, A., Abadi, A., & Zali, M. R. (2007). Comparing Cox Regression and Parametric Models for Survival of Patients with Gastric Carcinoma. Asian Pacific Journal of Cancer Prevention, 8(3), 412–416. https://journal.waocp.org/article_24627.html
  19. Rabe-Hesketh, S., & Skrondal, A. (2008). Multilevel and Longitudinal Modeling using Stata. https://books.google.com/books?hl=en&lr=&id=woi7AheOWSkC&oi=fnd&pg=PR21&ots=eeOxak0ONz&sig=88HHQVj52JsbDTbNLTodPpVcZNc
  20. Rahman, D. F. (2022). KPR Masih Jadi Pilihan Favorit Masyarakat Membeli Rumah pada Triwulan I 2022. https://databoks.katadata.co.id/datapublish/2022/05/23/kpr-masih-jadi-pilihan-favorit-masyarakat-membeli-rumah-pada-triwulan-i-2022
  21. Stensrud, M. J., & Hernán, M. A. (2020). Why Test for Proportional Hazards? JAMA Guide to Statistics and Methods, 323(14), 1401–1402. https://doi.org/10.1001/jama.2020.126
  22. Wahyuni, N. (2017). Penerapan Prinsip 5c dalam Pemberian Kredit sebagai Perlindungan Bank. Lex Journal: Kajian Hukum &Amp; Keadilan, 1(1). https://doi.org/10.25139/lex.v1i1.236

Last update:

No citation recorded.

Last update: 2025-01-22 08:58:53

No citation recorded.