skip to main content

IMPLEMENTATION OF PROPHET IN AMERICAN ELECTRICITY FORECASTING WITH AND WITHOUT PARAMETER TUNING

*Winita Sulandari scopus publons  -  Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Indonesia, 57126, Indonesia
Yudho Yudhanto  -  Informatics Engineering, Vocational School, Universitas Sebelas Maret, Surakarta, Indonesia, 57129, Indonesia
Riskhia Hapsari  -  Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Indonesia, 57126, Indonesia
Monica Dini Wijayanti  -  Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Indonesia, 57126, Indonesia
Hilman Ferdinandus Pardede  -  Research Center for Data and Information Sciences National, National Research and Innovation Agency, Bandung, Indonesia, Indonesia
Open Access Copyright (c) 2024 MEDIA STATISTIKA under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Prophet is one of the machine learning approximation methods that accommodate trends, seasonality, and holiday impacts in time series data. Generally, the performance of machine learning models can be improved by implementing hyperparameter tuning. This study investigates whether hyperparameter tuning can improve the model's performance. To show its effectiveness, the Prophet model constructed by parameter tuning is compared to the one with fixed parameter values (namely the default model) for both the original series and the Box-Cox transformed series in terms of mean absolute percentage error (MAPE). Based on the experimental results of the twenty-four daily electricity load time series in American Electric Power (AEP). This shows that parameter tuning successfully reduces the MAPE of the default model in the range of about 3-8% for training data. However, there is no guarantee for testing data. Although, in some cases, parameter tuning can reduce the MAPE value of the default model by up to 38%, in other cases, it actually increases the MAPE of the default model by almost 15%. The experiments on testing data also show that models built from transformed data do not necessarily produce more accurate forecast values than those built from the original data.
Fulltext View|Download
Keywords: Prophet; electricity load forecasting; Box-Cox transformation; holidays; parameter tuning.
Funding: Kemendikbudristek

Article Metrics:

  1. Almazrouee, A. I., Almeshal, A. M., Almutairi, A. S., Alenezi, M. R., & Alhajeri, S. N. (2020). Long-term forecasting of electrical loads in Kuwait using prophet and holt-winters models. Applied Sciences (Switzerland), 10(16). https://doi.org/10.3390/app10165627
  2. Aytaç, E. (2021). Forecasting Turkey’s Hazelnut Export Quantities with Facebook’s Prophet Algorithm and Box-Cox Transformation. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal, 10(1), 33–47. https://doi.org/10.14201/adcaij20211013347
  3. Basak, A., Rahman, A. T. M. S., Das, J., Hosono, T., & Kisi, O. (2022). Drought forecasting using the Prophet model in a semi-arid climate region of western India. Hydrological Sciences Journal, 67(9), 1397–1417. https://doi.org/10.1080/02626667.2022.2082876
  4. Bashir, T., Haoyong, C., Tahir, M. F., & Liqiang, Z. (2022). Short term electricity load forecasting using hybrid prophet-LSTM model optimized by BPNN. Energy Reports, 8, 1678–1686. https://doi.org/10.1016/j.egyr.2021.12.067
  5. Bicego, M., & Baldo, S. (2016). Properties of the Box–Cox transformation for pattern classification. Neurocomputing, 218, 390–400. https://doi.org/10.1016/j.neucom.2016.08.081
  6. Chaturvedi, S., Rajasekar, E., Natarajan, S., & McCullen, N. (2022). A comparative assessment of SARIMA, LSTM RNN and Fb Prophet models to forecast total and peak monthly energy demand for India. Energy Policy, 168. https://doi.org/10.1016/j.enpol.2022.113097
  7. Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: Principles and Practice (2nd ed.). Australia: OTexts
  8. Jin, X. B., Zheng, W. Z., Kong, J. L., Wang, X. Y., Bai, Y. T., Su, T. L., & Lin, S. (2021). Deep-learning forecasting method for electric power load via attention-based encoder-decoder with bayesian optimization. Energies, 14(6), 1596
  9. Kaur, D., Islam, S. N., Mahmud, M. A., Haque, M. E., & Dong, Z. Y. (2022). Energy forecasting in smart grid systems: recent advancements in probabilistic deep learning. IET Generation, Transmission & Distribution, 16(22), 4461-4479
  10. Khan, Z. A., Ullah, A., Ul Haq, I., Hamdy, M., Maria Maurod, G., Muhammad, K., Hijji, M., & Baik, S. W. (2022). Efficient Short-Term Electricity Load Forecasting for Effective Energy Management. Sustainable Energy Technologies and Assessments, 53. https://doi.org/10.1016/j.seta.2022.102337
  11. Kim, Y., Son, H., & Kim, S. (2019). Short term electricity load forecasting for institutional buildings. Energy Reports, 5, 1270–1280. https://doi.org/https://doi.org/10.1016/j.egyr.2019.08.086
  12. Mado, I. (2020). Electric Load Forecasting an Application of Cluster Models Based on Double Seasonal Pattern Time Series Analysis. In A. A. Jaoude (Ed.), Forecasting in Mathematics (p. Ch. 6). IntechOpen. https://doi.org/10.5772/intechopen.93493
  13. Ning, Y., Kazemi, H., & Tahmasebi, P. (2022). A comparative machine learning study for time series oil production forecasting: ARIMA, LSTM, and Prophet. Computers and Geosciences, 164. https://doi.org/10.1016/j.cageo.2022.105126
  14. Papacharalampous, G., & Tyralis, H. (2020). Hydrological time series forecasting using simple combinations: Big data testing and investigations on one-year ahead river flow predictability. Journal of Hydrology, 590. https://doi.org/10.1016/j.jhydrol.2020.125205
  15. Saeed, N., Nguyen, S., Cullinane, K., Gekara, V., & Chhetri, P. (2023). Forecasting container freight rates using the Prophet forecasting method. Transport Policy, 133, 86–107. https://doi.org/10.1016/j.tranpol.2023.01.012
  16. Sajjad, M., Khan, Z. A., Ullah, A., Hussain, T., Ullah, W., Lee, M. Y., & Baik, S. W. (2020). A novel CNN-GRU-based hybrid approach for short-term residential load forecasting. Ieee Access, 8, 143759-143768
  17. Shohan, M. J. A., Faruque, M. O., & Foo, S. Y. (2022). Forecasting of Electric Load Using a Hybrid LSTM-Neural Prophet Model. Energies, 15(6). https://doi.org/10.3390/en15062158
  18. Sulandari, W., Yudhanto, Y., & Rodrigues, P. C. (2022). The Use of Singular Spectrum Analysis and K-Means Clustering-Based Bootstrap to Improve Multistep Ahead Load Forecasting. Energies, 15(16). https://doi.org/10.3390/en15165838
  19. Taylor, S. J., & Letham, B. (2018). Forecasting at Scale. The American Statistician, 72(1), 37–45. https://doi.org/10.1080/00031305.2017.1380080
  20. Zhao, Y., Guo, N., Chen, W., Zhang, H., Guo, B., Shen, J., & Tian, Z. (2023). Multi-step ahead forecasting for electric power load using an ensemble model. Expert Systems with Applications, 211. https://doi.org/10.1016/j.eswa.2022.118649
  21. Zhu, S. (2021). Prophet-Based Research on the Medium and Long-Term Forecast Method of the F10.7 Flux of the Sun. Journal of Physics: Conference Series, 2026, 1–5
  22. Žunić, E., Korjenić, K., Delalić, S., & Šubara, Z. (2021). Comparison Analysis of Facebook’s Prophet, Amazon’s DeepAR+ and CNN-QR Algorithms for Successful Real-World Sales Forecasting. International Journal of Computer Science and Information Technology, 13(2), 67–84. https://doi.org/10.5121/ijcsit.2021.13205

Last update:

No citation recorded.

Last update: 2025-01-20 23:09:30

No citation recorded.