skip to main content

Refuse Derived Fuel (RDF) dari Sampah Perkotaan dengan Proses Biodrying: Review

Refuse Derived Fuel (RDF) from Urban Waste using Biodrying Process: Review

*Mochammad Chaerul orcid scopus  -  Institut Teknologi Bandung, Indonesia
Annisa Kusuma Wardhani  -  Institut Teknologi Bandung, Indonesia

Citation Format:
Abstract
The utilization of waste into fuel (Refuse Derived Fuel, RDF) is an alternative to overcome the problem of municipal solid waste (MSW). Many processes can be applied to produce RDF including through biodrying process. Biodrying is a part of Mechanical-Biological Treatment (MBT) aiming to reduce water content in the waste by utilizing heat generated from microorganism activities while degrading organic matter in the waste, thus the calorific value will increase. The paper aims to make a review from various research papers on biodrying process published in scientific journals, so it becomes one of reference on further research on biodrying process by considering the characteristics of waste in Indonesia. The review has been conducted by focusing on several important aspects on the research such as operation principle, reactor design configuration, parameters to be examined, and the characteristics of feed and product.
Fulltext View|Download
Keywords: biodrying, municipal solid waste, Refuse Derived Fuel, review

Article Metrics:

  1. Adani, F., Baido, D., Calcaterra, E., Genevini, P., 2002. The influence of biomass temperature on biostabilization-biodrying of municipal solid waste. Bioresour. Technol. 83, 173–179
  2. Bilgin, M., Tulun, S., 2015. Biodrying for Municipal Solid Waste: Volume and Weight Reduction. Environ. Technol. 36, 1691–1697
  3. Choi, H.I., Richard, T.L., Ahn, H.K., 2001. Composting High Moisture Materials: Biodrying Poultry Manure in a Sequentially Fed Reactor. Compost Sci. Util. 9, 303–311
  4. European Comission - Directorate General Environment, 2003. Refuse Derived Fuel, Current Practice and Perspectives (B4-3040/2000/306517/MAR/E3). Swindon
  5. Garg, A., Smith, R., Hill, D., Longhurst, P.J., Pollard, S.J.T., Simms, N.J., 2009. An Integrated Appraisal of Energy Recovery Options in The United Kingdom using Solid Recoverd Fuel Derived from Municipal Solid Waste. Waste Manag. 29, 2289–2297
  6. Haug, R.T., 1993. The Practical Handbook of Compost Engineering, Second Edi. ed. CRC Press LLC, Florida
  7. He, P., Tang, J., Zhang, D., Zeng, Y., Shao, L., 2010. Release of Volatile Organic Compounds During Bio-drying of Municipal Solid Waste. J. Environ. Sci. 22, 752–759
  8. He, P., Zhao, L., Zheng, W., Wu, D., Shao, L., 2013. Energy Balance of a Biodrying Process for Organic Wastes of High Moisture Content: A Review. Dry. Technol. 31, 132–145
  9. Huilinir, C., Villegas, M., 2014. Biodrying of Pulp and Paper Secondary Sludge: Kinetics of volatile solid biodegradation. Bioresour. Technol. 157, 206–213
  10. Jalil, N.A.A., Basri, H., Ahmad Basri, N.E., Abushammala, M.F.M., 2016. Biodrying of municipal solid waste under different ventilation periods. Environ. Eng. Res. 21, 145–151
  11. Kulcu, R., Yaldiz, O., 2004. Determination of Aeration Rate and Kinetics of Composting Some Agricultural Wastes. Bioresour. Technol. 93, 49–57
  12. Kumar, S., 2016. Municipal Solid Waste Management in Developing Countries. CRC Press, Taylor & Francis Group, Boca Raton
  13. Kumar, S., Zhang, Z., Awasthi, M.K., Li, R., 2019. Biological Processing of Solid Waste. CRC Press, Taylor & Francis Group, Boca Raton
  14. Mendoza, F.J.C., Prats, L.H., Martínez, F.R., Izquierdo, A.G., Guzmán, A.B.P., 2013. Effect of airflow on biodrying of gardening wastes in reactors. J. Environ. Sci. (China) 25, 865–872
  15. Mohammed, M., Donkor, A., Ozbay, I., 2018. Bio-Drying of Biodegradable Waste for Use as Solid Fuel: A Sustainable Approach for Green Waste Management. Agric. Waste Residures 6, 89–104
  16. Navaee-Ardeh, S., Bertrand, F., Stuart, P.R., 2009. Modeling and Experimental Verification of A Novel Biodrying Process for Drying Pulp and Paper Sludge. In: Proceedings of the 4th Inter-American Drying Conference. Montreal, hal. 635–538
  17. Novita, D.M., Damanhuri, E., 2010. Perhitungan Nilai Kalor Berdasarkan Komposisi dan Karakteristik Sampah Perkotaan di Indonesia dalam Konsep Waste to Energy. J. Tek. Lingkung. 16, 103–114
  18. Pang, S., Bhattacharya, S., Yan, J., 2019. Drying of Biomass, Biosolids, and Coal for Efficient Energy Supply and Environmental Benefits. Taylor & Francis Group, LLC, Boca Raton
  19. Paramita, W., Hartono, D.M., Soesilo, T.E.B., 2018. Sustainability of Refuse Derived Fuel Potential from Municipal Solid Waste for Cement’s Alternative Fuel in Indonesia (A Case at Jeruklegi Landfill, in Cilacap). In: IOP COnference Series: Earth and Environmental Science. hal. 1–6
  20. Rada, E.C., Franzinelli, A., Taiss, M., Ragazzi, M., Panaitescu, V., Apostol, T., 2007a. Lower Heating Value Dynamics during Municipal Solid Waste Bio-Drying. Environ. Technol. 28, 463–469
  21. Rada, E.C., Ragazzi, M., Apostol, T., Panaitescu, V., 2007b. Critical Analysis of High Moisture MSW Bio-drying: The Romanian Case Study. In: International Symposium MBT 2007. Hanover, Germany, hal. 44–551
  22. Reis, R.F. dos, Cordeiro, J.S., Font, X., Achon, C.L., 2019. the biodrying process of sewage sludge - a review. Dry. Technol. 1, 1–15
  23. Sadaka, S., Vandevender, K., Costello, T., Sharara, M., 2010. Partial Composting for Biodrying Organic Materials
  24. Shao, L.-M., He, X., Yang, N., Fang, J.-J., Lu, F., He, P.-J., 2015. Biodrying of Municipal Solid Waste Under Different Ventilation Modes: Drying Efficiency and Aqueous Pollution. Waste Manag. Res. 30, 1272–1280
  25. Shao, L.-M., Ma, Z.-H., Zhang, H., Zhang, D.-Q., He, P.-J., 2010. Bio-drying and Size Sorting of Municipal Solid Waste with High Water Content for Improving Energy Recovery. Waste Manag. 30, 1165–1170
  26. Shuqing, Z., Wenxiong, H., Ran, Y., Song, Y., Dandan, H., Chang, L., 2014. The effect of bio-drying pretreatment on Heating Values of Municipal Solid Waste. Adv. Mater. Res. 1010–1012, 537–546
  27. Sugni, M., Calcaterra, E., Adani, F., 2005. Biostabilization-biodrying of municipal solid waste by inverting air-flow. Bioresour. Technol. 96, 1331–1337
  28. Tom, A.P., Haridas, A., Pawels, R., 2016a. Biodrying Process Efficiency: -Significance of Reactor Matrix Height. Procedia Technol. 25, 130–137
  29. Tom, A.P., Pawels, R., Haridas, A., 2016b. Biodrying process: A Sustainable Technology for Treatment of Municipal Solid Waste with High Moisture Content. Waste Manag. 49, 64–72
  30. Tom, A.P., Pawels, R., Haridas, A., 2016c. Biodrying process: A Sustainable Technology for Treatment of Municipal Solid Waste with High Moisture Conten. Waste Manag. 49, 64–72
  31. Velis, C.A., Longhurst, P.J., Drew, G.H., Smith, R., Pollard, S.J.T., 2009. Biodrying for mechanical-biological treatment of wastes: A review of process science and engineering. Bioresour. Technol. 100, 2747–2761
  32. Villegas, M., Huilinir, C., 2014. Biodrying of Sewage Sludge: Kinetics of Volatile Solids Degradation Under Different Initial Moisture Contents and Air-Flow Rates. Bioresour. Technol. 174, 33–41
  33. Yang, B., Hao, Z., Jahng, D., 2017. Advances in Biodrying Technologies for Converting Organic Wastes into Solid Fuel. Dry. Technol. 1, 1–84
  34. Yuan, J., Zhang, D., Li, Y., Li, J., Luo, W., Zhang, H., Wang, G., Li, G., 2018. Effects of The Aeration Pattern, Aeration Rate, and Turning Frequency on Municipal Solid Waste Biodrying Performance. J. Environ. Manage. 218, 416–424
  35. Yuan, J., Zhang, D., Li, Yun, Chadwick, D., Li, G., Li, Yu, Du, L., 2017. Effects of Adding Bulking Agents on Biostabilization and Drying of Municipal Solid Waste. Waste Manag. 1, 1–9
  36. Zawadzka, A., Krzystek, L., Ledakowicz, S., 2009. Autothermal Biodrying of Municipal Solid Waste with High Moisture Content. Chem. Pap. 64, 265–268
  37. Zawadzka, A., Krzystek, L., Stolarek, P., Ledakowicz, S., 2010. Biodrying of Organic Fraction of Municipal Solid Wastes. Dry. Technol. 28, 1220–1226
  38. Zhang, D.-Q., He, P.-J., In, T.-F., Shao, L.-M., 2008. Bio-drying of municipal solid waste with high water content by aeration procedures regulation and inoculation. Bioresour. Technol. 99, 8796–8802
  39. Zhang, D.-Q., He, P.-J., Shao, L.-M., 2009. Sorting efficiency and combustion properties of municipal solid waste during bio-drying. Waste Manag. 29, 2816–2823
  40. Zhang, D., He, P., Shao, L., Jin, T., Han, J., 2008. Biodrying of municipal solid waste with high water content by combined hydrolytic-aerobic technology. J. Environ. Sci. 20, 1534–1540
  41. Zhang, H., Gu, J., Wang, G., Hao, L., Wu, X., 2014. Influence of Aeration Modes on Aerobic Bio-drying of Municipal Solid Waste (MSW). Adv. Mater. Res. 1010–1012, 934–938

Last update:

  1. Sustainable lean supply chain design in the refuse derived fuel production process at teaching factory Gunung Putri district

    Iveline Anne Marie, Siska Herliana, Emelia Sari, Ratnaningsih Ruhiyat, Tengku Nur Azila Binti Raja Mamat. THE 5TH INTERNATIONAL CONFERENCE ON BUILDINGS, CONSTRUCTION, AND ENVIRONMENTAL ENGINEERING: BCEE5, 3219 , 2024. doi: 10.1063/5.0235651
  2. Recovery of solid waste as refuse derived fuel (RDF) to develop urban waste management through community empowerment

    B Zaman, S Sumiyati, H R Wati, A R Aisy. IOP Conference Series: Earth and Environmental Science, 1414 (1), 2024. doi: 10.1088/1755-1315/1414/1/012021
  3. PENERAPAN KONSEP TEKNOLOGI BAHAN BAKAR JUMPUTAN PADAT (BBJP) SEBAGAI UPAYA MENGURANGI KEBUTUHAN LAHAN TEMPAT PEMROSESAN AKHIR SAMPAH CILOWONG, SERANG, BANTEN

    Budi Heri Pirngadi, Zaenal Ramdhani, Reza Pangestu. Jurnal Pengembangan Kota, 11 (2), 2023. doi: 10.14710/jpk.11.2.211-224
  4. Potential of refused derived fuel in Jakarta

    H Widyatmoko, M M Sintorini, E Suswantoro, E Sinaga, N Aliyah. IOP Conference Series: Earth and Environmental Science, 737 (1), 2021. doi: 10.1088/1755-1315/737/1/012005

Last update: 2024-12-21 13:00:49

No citation recorded.