skip to main content

Optimization of Fermentable Sugar Production from Pineapple Leaf Waste (Ananas comosus [L.] Merr) by Enzymatic Hydrolysis

Yohanita Restu Widihastuty  -  Universitas Sebelas Maret, Indonesia
Sutini Sutini  -  Universitas Sebelas Maret, Indonesia
*Aida Nur Ramadhani  -  Universitas Sebelas Maret, Indonesia

Citation Format:
Abstract

Pineapple leaf waste is one agricultural waste that has high cellulose content. Pineapple leaf waste's complex structure contains a bundle of packed fiber that makes it hard to remove lignin and hemicellulose structure, so challenging to produce reducing sugar. Dried pineapple leaf waste pretreated with a grinder to break its complex structure. Delignification process using 2% w/v NaOH solution at 87oC for 60 minutes has been carried out to remove lignin and hemicellulose structure so reducing sugar could be produced. Delignified pineapple leaf waste has been enzymatic hydrolyzed using cellulase enzyme (6 mL, 7 mL, and 8 mL) to produce reducing sugar. The sample was incubated in an incubator shaker at 155 rpm at 45, 55, and 60oC for 72 hours. Determination of reducing sugar yield had been carried out using the Dubois method and HPLC. The model indicated that the optimum operating condition of enzymatic hydrolysis is 7 mL of cellulase enzyme at 55oC to produce 96,673 mg/L reducing sugar. This result indicated that the enzymatic hydrolysis operating condition improved the reducing sugar yield from pineapple leaf waste. The optimum reducing sugar yield can produce biofuel by the saccharification process.


Fulltext View|Download
Keywords: cellulase enzyme, pineapple leaves, reducing sugar, agricultural waste
Funding: Universitas Sebelas Maret

Article Metrics:

  1. Akhlisah, Z.N., Yunus, R., Abidin, Z.Z., Lim, B.Y., Kania, D., 2021. Pretreatment methods for an effective conversion of oil palm biomass into sugars and high-value chemicals. Biomass and Bioenergy 144, 105-901
  2. Badan Pusat Statistik, 2012. Statistik Volume Ekspor Buah-Buahan Indonesia
  3. Bajaj, B.K., Pangotra, H., Wani, M., Sharma, P., Sharma, A., 2009. Partial purification and characterization of a highly thermostable and pH stable endoglucanase from a newly isolated Bacillus strain M-9. Indian Journal of Chemical Technology. 16, 382–387
  4. Banerjee, R., Chintagunta, A.D., Ray, S., 2019. Laccase mediated delignification of pineapple leaf waste: An ecofriendly sustainable attempt towards valorization. BioMed Central Chemical. 13, 1–11
  5. Chen, A., Guan, Y.J., Bustamante, M., Uribe, L., Uribe-Lorío, L., Roos, M.M., Liu, Y., 2020. Production of renewable fuel and value-added bioproducts using pineapple leaves in Costa Rica. Biomass and Bioenergy 141, 105675
  6. Conesa, C., Seguí, L., Laguarda-Miró, N., Fito, P., 2016. Microwaves as a pretreatment for enhancing enzymatic hydrolysis of pineapple industrial waste for bioethanol production. Food and Bioproducts Processing. 100, 203–213
  7. Dhillon, N., Chhibber, S., Saxena, M., Pajni, S., Vadehra, D. V, 1985. A constitutive endoglucanase (CMCase) from Bacillus licheniformis-1. Biotechnology Letters. 7, 695–697
  8. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.T., Smith, F., 1956. Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry. 28, 350–356
  9. Faria, L.U.S., Pacheco, B.J.S., Oliveira, G.C., Silva, J.L., 2020. Production of cellulose nanocrystals from pineapple crown fibers through alkaline pretreatment and acid hydrolysis under different conditions. J. Mater. Research and Technology. 9, 12346–12353
  10. Hamzah, H., 2018. Isolasi dan Karakterisasi Enzim Selulase dari Keong Sawah Pila ampullaceal Menggunakan Substrat Serbuk Gergaji Kayu. Pharmauho J. Farm. Sains, dan Kesehat. 4, 16–21
  11. Irianti, Supadmi, A.H., 2019. Efektifivitas Proses Pengambilan Serat Daun Nanas (Ananas comosus [L.] Merr) dengan Metode Pengeratan
  12. Kementerian Perindustrian, 2019. Pemanfaatan Serat Nanas (Ananas comosus)
  13. Kosim, M., Putra, R.S., 2010. Pengaruh Suhu pada Protease dari Bacillus subtilis. Pros. Skripsi Semester Gen
  14. Kumar, M., B, S.J., Banerjee, R., 2017. Biomethanation of Pineapple Wastes Using Potent Anaerobic Consortia Substituting Cow Manure. Department of Food Science and Technology
  15. Maneeintr, K., Leewisuttikul, T., Kerdsuk, S., Charinpanitkul, T., 2018. Hydrothermal and enzymatic treatments of pineapple waste for energy production. Energy Procedia 152, 1260–1265
  16. Mariano, A.P.B., Unpaprom, Y., Ramaraj, R., 2020. Hydrothermal pretreatment and acid hydrolysis of coconut pulp residue for fermentable sugar production. Department of Food Science and Technology. 122, 31–40
  17. Nakamura, K., Kitamura, K.B.T.-M. in E., 1988. Cellulases of Cellulomonas uda. In: Biomass Part A: Cellulose and Hemicellulose. Academic Press, pp. 211–216
  18. Nashiruddin, N.I., Mansor, A.F., Rahman, R.A., Ilias, R.M., Yussof, H.W., 2020. Process parameter optimization of pretreated pineapple leaves fiber for enhancement of sugar recovery. Ind. Crops Prod. 152
  19. Richana N., 2002. Produksi dan Prospek Enzim Xilanase dalam Pengembangan Bioindustri di Indonesia. Bul. AgroBio 5, 29-36
  20. Robson, L.M., Chambliss, G.H., 1984. Characterization of the cellulolytic activity of a Bacillus isolate. Applied and Environmental Microbiology. 47, 1039–1046
  21. Sadhu, S., 2013. Cellulase Production by Bacteria: A Review. British Microbiology Research Journal. 3, 235–258
  22. Setiawan, A.A., Shofiyani, A., Syahbanu, I., 2017. Pemanfaatan Limbah Daun Nanas (Ananas comosus) Sebagai Bahan Dasar Arang Aktif Untuk Adsorpsi Fe (II) 6, 66–74
  23. Sinaga, 2011. Comparison on The Nature of Polymer Matrix Composite Cellulose Acetate Synthesis and Cellulose Acetate Commercial Varied With Polypropilene for Packaging. Univ. Sumatera Utara
  24. Tarmansyah, U.S., 2007. Pemanfaatan Serat Rami untuk Pembuatan Selulosa
  25. Tsoumis, G., 1991. Science and technology of wood. Structure, properties, utilization. Sci. Technol. wood. Struct. Prop. Util. xiii + 494
  26. Vedovatto, F., Ugalde, G., Bonatto, C., Bazoti, S.F., Treichel, H., Mazutti, M.A., Zabot, G.L., Tres, M. V., 2021. Subcritical water hydrolysis of soybean residues for obtaining fermentable sugars. J. Supercrit. Fluids 167, 105043

Last update:

No citation recorded.

Last update: 2024-03-28 17:30:57

No citation recorded.