skip to main content

Constructed Wetlands for Treatment of Acid Mine Drainage: A Review

*Yudha Gusti Wibowo orcid scopus publons  -  Institut Teknologi Sumatera, Indonesia
Candra Wijaya  -  Institut Teknologi Sumatera, Indonesia
Petrus Halomoan  -  Institut Teknologi Sumatera, Indonesia
Aryo Yudhoyono  -  Institut Teknologi Sumatera, Indonesia
Muhammad Safri  -  Universitas Jambi, Indonesia

Citation Format:
Abstract
The coal mining industry is an industrial activity that impacts the environment. This activity will generate acid mine drainage due to the interaction of water, air and sulfide minerals. Acid mine drainage is wastewater with low pH and heavy metals content. These conditions will be given some negatives impact on the environment and human health. The low-cost, applicable and simple method to solve acid mine drainage in mining areas is constructed wetlands. Hence, this paper aims to describe the potential of wetlands as a low-cost and applicable method for acid mine drainage treatment. This paper also describes the holistic information about an overview of constructed wetlands, acid mine drainage (AMD) production and their negative impacts, recent trends in constructed wetlands, recommendation components of wetlands, potential application in rural areas and future considerations
Fulltext View|Download
Keywords: wetlands; constructed wetlands; acid mine drainage; heavy metals; mining industry

Article Metrics:

Article Info
Section: Review Article
Language : EN
  1. Abegglen, C., Ospelt, M., & Siegrist, H. (2008). Biological nutrient removal in a small-scale MBR treating household wastewater. Water Research, 42(1–2), 338–346. https://doi.org/10.1016/j.watres.2007.07.020
  2. Achparaki, M., Thessalonikeos, E., Tsoukali, H., Mastrogianni, O., Zaggelidou, E., Chatzinikolaou, F., Vasilliades, N., Raikos, N., Isabirye, M., Raju, D. V. ., Kitutu, M., Yemeline, V., Deckers, J., & J. Poesen Additional. (2012). We are IntechOpen , the world ’ s leading publisher of Open Access books Built by scientists , for scientists TOP 1 %. Intech, 13
  3. Al-Isawi, R., Ray, S., & Scholz, M. (2017). Comparative study of domestic wastewater treatment by mature vertical-flow constructed wetlands and artificial ponds. Ecological Engineering, 100, 8–18. https://doi.org/10.1016/j.ecoleng.2016.12.017
  4. Anawar, H. M. (2013). Impact of climate change on acid mine drainage generation and contaminant transport in water ecosystems of semi-arid and arid mining areas. Physics and Chemistry of the Earth, 58–60, 13–21. https://doi.org/10.1016/j.pce.2013.04.002
  5. Anawar, H. M. (2015). Sustainable rehabilitation of mining waste and acid mine drainage using geochemistry, mine type, mineralogy, texture, ore extraction and climate knowledge. Journal of Environmental Management, 158, 111–121. https://doi.org/10.1016/j.jenvman.2015.04.045
  6. Bahurudeen, A., Vaisakh, K. S., & Santhanam, M. (2015). Availability of sugarcane bagasse ash and potential for use as a supplementary cementitious material in concrete. Indian Concrete Journal, 89(6), 41–50
  7. Bednarek, A., Szklarek, S., & Zalewski, M. (2014). Nitrogen pollution removal from areas of intensive farming—comparison of various denitrification biotechnologies. Ecohydrology & Hydrobiology, 14. https://doi.org/10.1016/j.ecohyd.2014.01.005
  8. Besser, J. M., Brumbaugh, W. G., & Ingersoll, C. G. (2015). Characterizing toxicity of metal-contaminated sediments from mining areas. Applied Geochemistry, 57, 73–84. https://doi.org/10.1016/j.apgeochem.2014.05.021
  9. Brix, H., & Arias, C. A. (2005). The use of vertical flow constructed wetlands for on-site treatment of domestic wastewater: New Danish guidelines. Ecological Engineering, 25(5), 491–500. https://doi.org/https://doi.org/10.1016/j.ecoleng.2005.07.009
  10. Campbell, D. (2020). Wetlands. In M. I. Goldstein & D. A. DellaSala (Eds.), Encyclopedia of the World’s Biomes (Vols. 4–5, pp. 99–113). Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.11810-X
  11. Carroll, S., Goonetilleke, A., Thomas, E., Hargreaves, M., Frost, R., & Dawes, L. (2006). Integrated Risk Framework for Onsite Wastewater Treatment Systems. Environmental Management, 38, 286–303. https://doi.org/10.1007/s00267-005-0280-5
  12. Chen, J., Deng, S., Jia, W., Li, X., & Chang, J. (2021). Removal of multiple heavy metals from mining-impacted water by biochar-filled constructed wetlands: Adsorption and biotic removal routes. Bioresource Technology, 331(March), 125061. https://doi.org/10.1016/j.biortech.2021.125061
  13. Chen, L. xing, Huang, L. nan, Méndez-García, C., Kuang, J. liang, Hua, Z. shuang, Liu, J., & Shu, W. sheng. (2016). Microbial communities, processes and functions in acid mine drainage ecosystems. Current Opinion in Biotechnology, 38, 150–158. https://doi.org/10.1016/j.copbio.2016.01.013
  14. Chu, W. L., Dang, N. L., Kok, Y. Y., Ivan Yap, K. S., Phang, S. M., & Convey, P. (2019). Heavy metal pollution in Antarctica and its potential impacts on algae. Polar Science, 20(September 2018), 75–83. https://doi.org/10.1016/j.polar.2018.10.004
  15. Crini, G., Lichtfouse, E., Wilson, L. D., & Morin-Crini, N. (2019). Conventional and non-conventional adsorbents for wastewater treatment. Environmental Chemistry Letters, 17(1), 195–213. https://doi.org/10.1007/s10311-018-0786-8
  16. Dadban Shahamat, Y., Asgharnia, H., Kalankesh, L. R., & hosanpour, M. (2018). Data on wastewater treatment plant by using wetland method, Babol, Iran. Data in Brief, 16, 1056–1061. https://doi.org/https://doi.org/10.1016/j.dib.2017.12.034
  17. Donde, O., & Atalitsa, C. (2020). Constructed Wetlands in Wastewater Treatment and Challenges of Emerging Resistant Genes Filtration and Reloading (pp. 1–16). https://doi.org/10.5772/intechopen.93293
  18. El Hawary, A., & Shaban, M. (2018). Improving drainage water quality: Constructed wetlands-performance assessment using multivariate and cost analysis. Water Science, 32(2), 301–317. https://doi.org/10.1016/j.wsj.2018.07.001
  19. Emili, L. A., Pizarchik, J., & Mahan, C. G. (2016). Sustainable Remediation of Legacy Mine Drainage: A Case Study of the Flight 93 National Memorial. Environmental Management, 57(3), 660–670. https://doi.org/10.1007/s00267-015-0625-7
  20. Evangelou, V. P. (1995). Pyrite oxidation and its control : solution chemistry, surface chemistry, acid mine drainage (AMD), molecular oxidation mechanisms, microbial role, kinetics, control, ameliorates and limitations, microencapsulation
  21. Favas, P. J. C., Sarkar, S. K., Rakshit, D., Venkatachalam, P., & Prasad, M. N. V. (2016). Acid Mine Drainages From Abandoned Mines: Hydrochemistry, Environmental Impact, Resource Recovery, and Prevention of Pollution. In Environmental Materials and Waste: Resource Recovery and Pollution Prevention. Elsevier Inc. https://doi.org/10.1016/B978-0-12-803837-6.00017-2
  22. Fernández-Caliani, J. C., Giráldez, M. I., & Barba-Brioso, C. (2019). Oral bioaccessibility and human health risk assessment of trace elements in agricultural soils impacted by acid mine drainage. Chemosphere, 237. https://doi.org/10.1016/j.chemosphere.2019.124441
  23. Ferreira, R. A., Pereira, M. F., Magalhães, J. P., Maurício, A. M., Caçador, I., & Martins-Dias, S. (2021). Assessing local acid mine drainage impacts on natural regeneration-revegetation of São Domingos mine (Portugal) using a mineralogical, biochemical and textural approach. Science of the Total Environment, 755, 142825. https://doi.org/10.1016/j.scitotenv.2020.142825
  24. Fitch, M. W. (2014). Constructed Wetlands. In S. Ahuja (Ed.), Comprehensive Water Quality and Purification (Vol. 3, pp. 268–295). Elsevier. https://doi.org/10.1016/B978-0-12-382182-9.00053-0
  25. García-Lorenzo, M. L., Marimón, J., Navarro-Hervás, M. C., Pérez-Sirvent, C., Martínez-Sánchez, M. J., & Molina-Ruiz, J. (2016). Impact of acid mine drainages on surficial waters of an abandoned mining site. Environmental Science and Pollution Research, 23(7), 6014–6023. https://doi.org/10.1007/s11356-015-5337-2
  26. Garcı́a, J., Mujeriego, R., Obis, J. M., & Bou, J. (2001). Wastewater treatment for small communities in Catalonia (Mediterranean region). Water Policy, 3(4), 341–350. https://doi.org/https://doi.org/10.1016/S1366-7017(01)00080-0
  27. Ghimire, U., Nandimandalam, H., Martinez-Guerra, E., & Gude, V. G. (2019). Wetlands for wastewater treatment. Water Environment Research, 91(10), 1378–1389. https://doi.org/10.1002/wer.1232
  28. Gray, N. F. (1998). Acid mine drainage composition and the implications for its impact on lotic systems. Water Research, 32(7), 2122–2134. https://doi.org/10.1016/S0043-1354(97)00449-1
  29. Guzman, M., Romero Arribasplata, M. B., Flores Obispo, M. I., & Bravo Thais, S. C. (2022). Removal of heavy metals using a wetland batch system with carrizo (phragmites australis (cav.) trin. ex steud.): A laboratory assessment. Acta Ecologica Sinica, 42(1), 102–109. https://doi.org/10.1016/j.chnaes.2021.08.001
  30. Hdidou, M., Necibi, M. C., Labille, J., El Hajjaji, S., Dhiba, D., Chehbouni, A., & Roche, N. (2022). Potential Use of Constructed Wetland Systems for Rural Sanitation and Wastewater Reuse in Agriculture in the Moroccan Context. Energies, 15(1). https://doi.org/10.3390/en15010156
  31. Hogsden, K. L., & Harding, J. S. (2012). Consequences of acid mine drainage for the structure and function of benthic stream communities: A review. Freshwater Science, 31(1), 108–120. https://doi.org/10.1899/11-091.1
  32. Ichinari, T., Ohtsubo, A., Ozawa, T., Hasegawa, K., Teduka, K., Oguchi, T., & Kiso, Y. (2008). Wastewater treatment performance and sludge reduction properties of a household wastewater treatment system combined with an aerobic sludge digestion unit. Process Biochemistry, 43, 722–728
  33. Ji, Z., Tang, W., & Pei, Y. (2022). Constructed wetland substrates: A review on development, function mechanisms, and application in contaminants removal. Chemosphere, 286, 131564. https://doi.org/https://doi.org/10.1016/j.chemosphere.2021.131564
  34. Johnson, D. B., & Hallberg, K. B. (2008). Carbon, Iron and Sulfur Metabolism in Acidophilic Micro-Organisms. In Advances in Microbial Physiology (Vol. 54, Issue 08). Elsevier Masson SAS. https://doi.org/10.1016/S0065-2911(08)00003-9
  35. Kalu, C. M., Ogola, H. J. O., Selvarajan, R., Tekere, M., & Ntushelo, K. (2022). Correlations Between Root Metabolomics and Bacterial Community Structures in the Phragmites australis Under Acid Mine Drainage-Polluted Wetland Ecosystem. Current Microbiology, 79(1), 1–15. https://doi.org/10.1007/s00284-021-02748-7
  36. Kayet, N., Pathak, K., Singh, C. P., Chowdary, V. M., Bhattacharya, B. K., Kumar, D., Kumar, S., & Shaik, I. (2022). Vegetation health conditions assessment and mapping using AVIRIS-NG hyperspectral and field spectroscopy data for -environmental impact assessment in coal mining sites. Ecotoxicology and Environmental Safety, 239(November 2021), 113650. https://doi.org/10.1016/j.ecoenv.2022.113650
  37. Khoeurn, K., Sakaguchi, A., Tomiyama, S., & Igarashi, T. (2019). Long-term acid generation and heavy metal leaching from the tailings of Shimokawa mine, Hokkaido, Japan: Column study under natural condition. Journal of Geochemical Exploration, 201(March), 1–12. https://doi.org/10.1016/j.gexplo.2019.03.003
  38. Kiiza, C., Pan, S. qi, Bockelmann-Evans, B., & Babatunde, A. (2020). Predicting pollutant removal in constructed wetlands using artificial neural networks (ANNs). Water Science and Engineering, 13(1), 14–23. https://doi.org/10.1016/j.wse.2020.03.005
  39. Kløcker Larsen, R., Boström, M., District, M. R. H., District, V. S. R. H., District, V. R. H., & Wik-Karlsson, J. (2022). The impacts of mining on Sámi lands: A knowledge synthesis from three reindeer herding districts. Extractive Industries and Society, 9. https://doi.org/10.1016/j.exis.2022.101051
  40. Koo, J.-C., Park, M. S., & Youn, Y.-C. (2013). Preferences of urban dwellers on urban forest recreational services in South Korea. Urban Forestry & Urban Greening, 12(2), 200–210. https://doi.org/https://doi.org/10.1016/j.ufug.2013.02.005
  41. Kornilov, A. G., Kolmykov, S. N., Prisny, A. V, Lebedeva, M. G., Kornilova, E. A., & Oskin, A. A. (2019). Current hydroecological situation of the Starooskolsko- Gubkinsky mining region on the example of the Oskolets River. EurAsian Journal of BioSciences, 870(July), 865–870
  42. Kothapalli, C. R. (2021). Differential impact of heavy metals on neurotoxicity during development and in aging central nervous system. Current Opinion in Toxicology, 26, 33–38. https://doi.org/10.1016/j.cotox.2021.04.003
  43. Lamers, L. P. M., van Diggelen, J. M. H., Op Den Camp, H. J. M., Visser, E. J. W., Lucassen, E. C. H. E. T., Vile, M. A., Jetten, M. S. M., Smolders, A. J. P., & Roelofs, J. G. M. (2012). Microbial transformations of nitrogen, sulfur, and iron dictate vegetation composition in wetlands: A review. Frontiers in Microbiology, 3(APR), 1–12. https://doi.org/10.3389/fmicb.2012.00156
  44. Lantz, V., Boxall, P. C., Kennedy, M., & Wilson, J. (2013). The valuation of wetland conservation in an urban/peri urban watershed. Regional Environmental Change, 13(5), 939–953. https://doi.org/10.1007/s10113-012-0393-3
  45. Lee, C. G., Fletcher, T. D., & Sun, G. (2009). Nitrogen removal in constructed wetland systems. Engineering in Life Sciences, 9(1), 11–22. https://doi.org/10.1002/elsc.200800049
  46. Leung, H. M., Duzgoren-Aydin, N. S., Au, C. K., Krupanidhi, S., Fung, K. Y., Cheung, K. C., Wong, Y. K., Peng, X. L., Ye, Z. H., Yung, K. K. L., & Tsui, M. T. K. (2017). Monitoring and assessment of heavy metal contamination in a constructed wetland in Shaoguan (Guangdong Province, China): bioaccumulation of Pb, Zn, Cu and Cd in aquatic and terrestrial components. Environmental Science and Pollution Research, 24(10), 9079–9088. https://doi.org/10.1007/s11356-016-6756-4
  47. Li, F., Xie, Y., Chen, X., Hou, Z., Li, X., Deng, Z., Liu, Y., Hu, J., & Liu, N. (2013). Succession of aquatic macrophytes in the Modern Yellow River Delta after 150 years of alluviation. Wetlands Ecology and Management, 21(3), 219–228. https://doi.org/10.1007/s11273-013-9297-3
  48. Lu, S., Pei, L., & Bai, X. (2015). Study on method of domestic wastewater treatment through new-type multi-layer artificial wetland. International Journal of Hydrogen Energy, 40(34), 11207–11214. https://doi.org/10.1016/j.ijhydene.2015.05.165
  49. Mamelkina, M. A., Tuunila, R., Sillänpää, M., & Häkkinen, A. (2019). Systematic study on sulfate removal from mining waters by electrocoagulation. Separation and Purification Technology, 216(January), 43–50. https://doi.org/10.1016/j.seppur.2019.01.056
  50. Marchand, L., Mench, M., Jacob, D. L., & Otte, M. L. (2010). Metal and metalloid removal in constructed wetlands, with emphasis on the importance of plants and standardized measurements: A review. Environmental Pollution, 158(12), 3447–3461. https://doi.org/https://doi.org/10.1016/j.envpol.2010.08.018
  51. McDonald, S. T. (2018). Some environmental considerations. Regenerating the Inner City: Glasgow’s Experience, 152–165. https://doi.org/10.4324/9781351035583-8
  52. Mitra, S., Chakraborty, A. J., Tareq, A. M., Emran, T. Bin, Nainu, F., Khusro, A., Idris, A. M., Khandaker, M. U., Osman, H., Alhumaydhi, F. A., & Simal-Gandara, J. (2022). Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. Journal of King Saud University - Science, 34(3), 101865. https://doi.org/10.1016/j.jksus.2022.101865
  53. Mohanty, A. K., Lingaswamy, M., Rao, V. G., & Sankaran, S. (2018). Impact of acid mine drainage and hydrogeochemical studies in a part of Rajrappa coal mining area of Ramgarh District, Jharkhand State of India. Groundwater for Sustainable Development, 7, 164–175. https://doi.org/10.1016/j.gsd.2018.05.005
  54. Nakajima, J., Fujimura, Y., & Inamori, Y. (1999). Performance evaluation of on-sitetreatment facilities for wastewater from households, hotels and restaurants. Water Science and Technology, 39(8), 85–92. https://doi.org/https://doi.org/10.1016/S0273-1223(99)00189-4
  55. Nguyen, T. T., Huang, H., Nguyen, T. A. H., & Soda, S. (2022). Recycling clamshell as substrate in lab-scale constructed wetlands for heavy metal removal from simulated acid mine drainage. Process Safety and Environmental Protection, xxxx, 0–1. https://doi.org/10.1016/j.psep.2022.04.026
  56. Ningtyas, R. (2015). Pengolahan Air Limbah dengan Proses Lumpur Aktif. In Jurusan Teknik Kimia, ITB
  57. Nivala, J., Boog, J., Headley, T., Aubron, T., Wallace, S., Brix, H., Mothes, S., van Afferden, M., & Müller, R. A. (2019). Side-by-side comparison of 15 pilot-scale conventional and intensified subsurface flow wetlands for treatment of domestic wastewater. Science of The Total Environment, 658, 1500–1513. https://doi.org/https://doi.org/10.1016/j.scitotenv.2018.12.165
  58. Pat-Espadas, A. M., Portales, R. L., Amabilis-Sosa, L. E., Gómez, G., & Vidal, G. (2018). Review of constructed wetlands for acid mine drainage treatment. Water (Switzerland), 10(11), 1–25. https://doi.org/10.3390/w10111685
  59. Piriya, R. S., Oumabady, S., & Ilakiya, T. (2020). Sulphide Mineral Leaching and Chemistry of Sulphide Oxidation by Bacteria. Biotica Research Today, 2(6), 475–477
  60. Prihatini, N. S., Anwar, N. S., Nirtha, I., & Noor, R. (2022). Perancangan Bangunan Pengolahan Grey Water Dengan Sistem Lahan Basah Buatan Aliran Bawah Permukaan ( LBB-AHBP ) Skala Kelurahan. Jurnal Pengabdian Pada Masyarakat, 7(1), 1–14. https://doi.org/10.30653/002.202271.4
  61. Rai, P. K. (2021). Heavy metals and arsenic phytoremediation potential of invasive alien wetland plants Phragmites karka and Arundo donax: Water-Energy-Food (W-E-F) Nexus linked sustainability implications. Bioresource Technology Reports, 15(June), 100741. https://doi.org/10.1016/j.biteb.2021.100741
  62. Ray, B. C., & Rathore, D. (2014). Environmental Damage and Degradation of FRP Composites: A Review Report. Polymer Composites, 36(3), 410–423. https://doi.org/10.1002/pc
  63. Ren, K., Zeng, J., Liang, J., Yuan, D., Jiao, Y., Peng, C., & Pan, X. (2021). Impacts of acid mine drainage on karst aquifers: Evidence from hydrogeochemistry, stable sulfur and oxygen isotopes. Science of the Total Environment, 761, 143223. https://doi.org/10.1016/j.scitotenv.2020.143223
  64. Rentier, E. S., & Cammeraat, L. H. (2022). The environmental impacts of river sand mining. Science of The Total Environment, 838(April), 155877. https://doi.org/10.1016/j.scitotenv.2022.155877
  65. Resende, J. D., Nolasco, M. A., & Pacca, S. A. (2019). Life cycle assessment and costing of wastewater treatment systems coupled to constructed wetlands. Resources, Conservation and Recycling, 148(April), 170–177. https://doi.org/10.1016/j.resconrec.2019.04.034
  66. Roldan-Hernandez, L., Boehm, A. B., & Mihelcic, J. R. (2020). Parachute Environmental Science and Engineering. In Environmental Science and Technology (Vol. 54, Issue 23). https://doi.org/10.1021/acs.est.0c07462
  67. Rosanti, D., Wibowo, Y. G., Safri, M., & Maryani, A. T. (2020). Bioremediations Technologies on Wastewater Treatment : Opportunities , Challenges and Economic Perspective. Sainmatika: Jurnal Ilmiah Matematika Dan Ilmu Pengetahuan Alam, 17(2), 142–156. https://doi.org/10.31851/sainmatika.v17i2.5085
  68. Sabina, R. O., Santos, E. S., & Abreu, M. M. (2019). Accumulation of Mn and Fe in aromatic plant species from the abandoned Rosalgar Mine and their potential risk to human health. Applied Geochemistry, 104(March), 42–50. https://doi.org/10.1016/j.apgeochem.2019.03.013
  69. Saeed, T., Alam, M. K., Miah, M. J., & Majed, N. (2021). Removal of heavy metals in subsurface flow constructed wetlands: Application of effluent recirculation. Environmental and Sustainability Indicators, 12, 100146. https://doi.org/https://doi.org/10.1016/j.indic.2021.100146
  70. Saleem, H., Arslan, M., Rehman, K., Tahseen, R., & Afzal, M. (2019). Phragmites australis — a helophytic grass — can establish successful partnership with phenol-degrading bacteria in a floating treatment wetland. Saudi Journal of Biological Sciences, 26(6), 1179–1186. https://doi.org/10.1016/j.sjbs.2018.01.014
  71. Santosa, L. F., Sudarno, & Zaman, B. (2021). Potential of local plant Eleocharis dulcis for wastewater treatment in constructed wetlands system: Review. IOP Conference Series: Earth and Environmental Science, 896(1). https://doi.org/10.1088/1755-1315/896/1/012030
  72. Schleupner, C., & Schneider, U. A. (2013). Allocation of European wetland restoration options for systematic conservation planning. Land Use Policy, 30(1), 604–614. https://doi.org/https://doi.org/10.1016/j.landusepol.2012.05.008
  73. Sharma, R., Vymazal, J., & Malaviya, P. (2021). Application of floating treatment wetlands for stormwater runoff: A critical review of the recent developments with emphasis on heavy metals and nutrient removal. Science of the Total Environment, 777, 146044. https://doi.org/10.1016/j.scitotenv.2021.146044
  74. Sheoran, A. S. (2017). MANAGEMENT OF ACIDIC MINE WASTE WATER BY CONSTRUCTED WETLAND TREATMENT SYSTEMS: A BENCH SCALE STUDY. European Journal of Sustainable Development, 6. https://doi.org/10.14207/ejsd.2017.v6n2p245
  75. Simate, G. S., & Ndlovu, S. (2021). Acid Mine Drainage From Waste to Resources. In Africa’s potential for the ecological intensification of agriculture (Vol. 53, Issue 9)
  76. Siracusa, G., & La Rosa, A. (2006). Design of a constructed wetland for wastewater treatment in a Sicilian town and environmental evaluation using the emergy analysis. Ecological Modelling, 197, 490–497. https://doi.org/10.1016/j.ecolmodel.2006.03.019
  77. Stefanakis, A., Akratosk, C. S., & Tsihrintzis, V. A. (2019). Vertical Flow Constructed Wetland
  78. Sun, X., Yuan, L., Liu, M., Liang, S., Li, D., & Liu, L. (2022). Quantitative estimation for the impact of mining activities on vegetation phenology and identifying its controlling factors from Sentinel-2 time series. International Journal of Applied Earth Observation and Geoinformation, 111(April), 102814. https://doi.org/10.1016/j.jag.2022.102814
  79. Taslima, K., Al-Emran, M., Rahman, M. S., Hasan, J., Ferdous, Z., Rohani, M. F., & Shahjahan, M. (2022). Impacts of heavy metals on early development, growth and reproduction of fish – A review. Toxicology Reports, 9(January), 858–868. https://doi.org/10.1016/j.toxrep.2022.04.013
  80. Thomas, G., Sheridan, C., & Holm, P. E. (2021). A critical review of phytoremediation for acid mine drainage-impacted environments. Science of The Total Environment, 811, 152230. https://doi.org/10.1016/j.scitotenv.2021.152230
  81. Thomson, B. M., & Turney, W. R. (1994). Minerals and mine drainage. In Water Environment Research (Vol. 66, Issue 4). https://doi.org/10.1002/j.1554-7531.1994.tb00112.x
  82. Tolvanen, A., Eilu, P., Juutinen, A., Kangas, K., Kivinen, M., Markovaara-Koivisto, M., Naskali, A., Salokannel, V., Tuulentie, S., & Similä, J. (2019). Mining in the Arctic environment – A review from ecological, socioeconomic and legal perspectives. Journal of Environmental Management, 233(May), 832–844. https://doi.org/10.1016/j.jenvman.2018.11.124
  83. Türker, O. C., Böcük, H., & Yakar, A. (2013). The phytoremediation ability of a polyculture constructed wetland to treat boron from mine effluent. Journal of Hazardous Materials, 252–253, 132–141. https://doi.org/https://doi.org/10.1016/j.jhazmat.2013.02.032
  84. Türker, O. C., Türe, C., Böcük, H., & Yakar, A. (2013). Constructed Wetlands as Green Tools for Management of Boron Mine Wastewater. International Journal of Phytoremediation, 16(6), 537–553. https://doi.org/10.1080/15226514.2013.798620
  85. Tutu, H., McCarthy, T. S., & Cukrowska, E. (2008). The chemical characteristics of acid mine drainage with particular reference to sources, distribution and remediation: The Witwatersrand Basin, South Africa as a case study. Applied Geochemistry, 23(12), 3666–3684. https://doi.org/10.1016/j.apgeochem.2008.09.002
  86. Upadhyay, A., Laing, T., Kumar, V., & Dora, M. (2021). Exploring barriers and drivers to the implementation of circular economy practices in the mining industry. Resources Policy, 72(February), 102037. https://doi.org/10.1016/j.resourpol.2021.102037
  87. Vymazal, J. (2013). The use of hybrid constructed wetlands for wastewater treatment with special attention to nitrogen removal: a review of a recent development. Water Research, 47 14, 4795–4811
  88. Vymazal, J. (2014). Constructed wetlands for treatment of industrial wastewaters: A review. Ecological Engineering, 73, 724–751. https://doi.org/10.1016/j.ecoleng.2014.09.034
  89. Wibowo, Y. G., Safitri, H., Ramadan, B. S., & Sudibyo. (2022). Adsorption test using ultra-fine materials on heavy metals removal. Bioresource Technology Reports, 154166. https://doi.org/10.1016/j.biteb.2022.101149
  90. Wibowo, Y. G., Sudibyo, Naswir, M., & Ramadan, B. S. (2022). Performance of a novel biochar-clamshell composite for real acid mine drainage treatment. Bioresource Technology Reports, 17(February), 118159. https://doi.org/10.1016/j.biteb.2022.100993
  91. Wibowo, Y. G., Zahar, W., & Maryani, A. T. (2018). Case Study of Pump Planning at PIT Donggang Utara Blok 32 Open Mining, PT Buana Bara Ekapratama. Jurnal Sains Dan Teknologi Lingkungan, 10(2), 115–124
  92. Wu, S., Austin, D., Liu, L., & Dong, R. (2011). Performance of integrated household constructed wetland for domestic wastewater treatment in rural areas. Ecological Engineering, 37(6), 948–954. https://doi.org/10.1016/j.ecoleng.2011.02.002

Last update:

  1. Recent advances in the adsorptive removal of heavy metals from acid mine drainage by conventional and novel materials: A review

    Yudha Gusti Wibowo, Tarmizi Taher, Khairurrijal Khairurrijal, Bimastyaji Surya Ramadan, Hana Safitri, Sudibyo Sudibyo, Ahmad Tawfiequrahman Yuliansyah, Himawan Tri Bayu Murti Petrus. Bioresource Technology Reports, 25 , 2024. doi: 10.1016/j.biteb.2024.101797

Last update: 2024-03-29 02:26:29

No citation recorded.