skip to main content

Physical and Chemical Treatability Assessment for Food Industry Wastewater in Wastewater Treatment Plant Design

*Wiharyanto Oktiawan  -  Universitas Diponegoro, Indonesia
Junaidi Junaidi  -  Universitas Diponegoro, Indonesia
Fadhila Raziani  -  Universitas Diponegoro, Indonesia

Citation Format:
Abstract

Food industry wastewater has characteristics that contain high organic matter and suspended solids. Most of the methods used are physical and chemical treatment because these methods have high efficiency and effectivity. In designing a new wastewater treatment plant, the treatability assessment is essential to any consideration or reference in planning the treatment process to be implemented. This research aims to obtain treatability assessment results that will be used as consideration in planning treatment units in WWTP according to the characteristics of wastewater tested. The removal results of the sedimentation test with Imhoff Cone were able to remove 51.2% COD, 64.04% BOD, and 95.21% TSS with the optimum settling time of 40 minutes. The samples test continued to the rapid-slow mixing test using the jar test, resulting that by adding coagulant at the optimum dose of PAC 120 mg/L, it was capable to remove 68.21% of COD, 73.22% of BOD, and up to 98.07% of TSS at the end of the process. Based on the assessment results, the physical and chemical treatment can remove suspended solids pollutant parameters with high efficiency so it will be considered to be used in planning Wastewater Treatment Plants for this food industry.

Fulltext View|Download
Keywords: Imhoff cone; jar test; rapid mixing; sedimentation; slow mixing; TSS

Article Metrics:

  1. Anugrah, T. 2013. Efektivitas Campuran Poli (Aluminium Klorida) (PAC) dan Aluminium Sulfat (Tawas) sebagai Koagulan dalam Pengolahan Air Bersih. Departemen Manajemen Sumberdaya Perairan FPIK Institut Pertanian Bogor
  2. Ayoub, G., Hamzeh, A., and Semerjian, L. 2011. Post Treatment Of Tannery Wastewater Using Lime/Bittern Coagulation And Activated Carbon Adsorption
  3. Benefield, L. D., and Randall, C. W. (1980). Biological Process Design for Wastewater Treatment. Englewood Cliffs: Prentice Hall
  4. Budiman, A. D. 2008. Kinerja Koagulan Poly Aluminium Chloride (PAC) dalam Penjernihan Air Sungai Kalimas Surabaya Menjadi Air Bersih. Fakultas Teknik Widya Mandala
  5. Ebeling, J. M. and Ogden, S. R. 2004. Application of Chemical Coagulation Aids for the Removal of Suspended Solids (TSS) and Phosphorus from the Microscreen Effluent Discharge of an Intensive Recirculating Aquaculture System. North American Journal of Aquaculture , 198 - 207
  6. Gebbie, P. 2005. A Dummy’s Guide to Coagulants. 68th Annual Water Industry Engineers and Operators Conference Schweppes Centre. Bendigo
  7. Hadi, W. 2012. Perencanaan Bangunan Pengolahan Air Minum. Surabaya: ITS Press
  8. Hameed, Y., Idris, A., S.A., and Abdullah, A. 2016. A tannin-based agent for coagulation and flocculation of municipal wastewater: Chemical composition, performance assessment compared to Polyaluminum chloride, and application in a pilot plant. Journal of Environmental Management., 494-503
  9. Kurnawan, A. R. 2016. Pembuatan Biogas Dari Vinasse : Limbah Industri Biogas. Institut Teknologi Sepuluh Nopember Surabaya
  10. Marbun, J. A. 2019. Perencanaan Unit Upflow Anaerobic Sludge Blanket (UASB) Pada IPAL Eksisting Industri Kelapa Sawit Di Riau. ITS
  11. Muralimohan, N., Palanisamy, T., and Vimaladevi, M. 2014. Experimental Study on Removal Efficiency of Blended Coagulants in Textile Wastewater Treatment. International. Journal of Research in Engineering & Technology, 15-20
  12. Oktariany, A., and Kartoharjono, S. 2018. Effect of Coagulant Dosage on Tofu Industry Wastewater Treatment in Combination with Ultrafiltration Process using Polysulfone Membrane. E3S Web of Conferences
  13. Putri, S., and Kartoharjono, S. 2018. Combination of Coagulation-flocculation and Ultrafiltration Processes using Cellulose Acetate Membrane for Wastewater Treatment of Tofu Industry. E3S Web of Conferences
  14. Razif, M. A. 2014. Perbandingan Kinerja IPAL Anaerobic Filter Dengan Anaerobic Baffled Reactor Untuk Implementasi di Pusat Perbelanjaan Kota Surabaya. Surabaya: ITS
  15. Risdianto, D. 2007. Optimisasi Proses Koagulasi Flokulasi Untuk Pengolahan Air Limbah Industri Jamu (Studi Kasus PT. Sido Muncul). Thesis. Semarang: Universitas Diponegoro
  16. Sabilina, P. E., Setiawan, A., and Afiuddin, A. E. 2018. Studi Penggunaan Dosis Koagulan PAC (Poly Aluminium Chloride) dan. Kumpulan Jurnal dan Prosiding Elektronik PPNS (Politeknik Perkapalan Negeri Surabaya)
  17. Siregar, R. 2016. Perbandingan DED IPAL Anaerobic Filter dengan Upflow Anaerobic Sludge Blanket Untuk Tempat Pelelangan Ikan (TPI) Sedati di Kabupaten SIdoarjo. Jurnal Teknik ITS. Vol. 5, No. 2, D233 – D236
  18. Tchobanoglous, G., Stensel, H. D., Tsuchihashi, R., and Burton, F. 2014. Wastewater Engineering Treatment and Resource Recovery. 5th ed. New York: McGraw-Hill Education
  19. Tilley, E. 2014. Compendium of Sanitation Systems and Technologies 2nd Revised Edition. Duebendorf, Switzerland: Swiss Federal Institute of Aquatic Science and Technology (Eawag)
  20. Water Environment Federation. 2008. Industrial Wastewater Management, Treatment, and Disposan. Alexandria: Mc. Graw Hill
  21. Zakaria, A., Sauri, S., Fadela, D. M., and Wardhani, P. S. 2021. Efisiensi Penurunan Kadar COD, TS, TSS, Kekeruhan, dan TDS pada Air Limbah Industri Pangan menggunakan Koagulan Poly Alumunium Chloride dengan metode Jar Test. Program Studi Pengolahan Limbah Industri, Politeknik AKA Bogor

Last update:

No citation recorded.

Last update: 2024-05-19 00:56:10

No citation recorded.