skip to main content

Biochar-Based Subsurface-Flow Wetland from Crumb Rubber Scrap in Treatment of Landfill Leachate

*Anggrika Riyanti orcid scopus  -  Universitas Batanghari, Indonesia
Hadrah Hadrah  -  Universitas Batanghari, Indonesia
Monik Kasman  -  Universitas Batanghari, Indonesia
Bimastyaji Surya Ramadan  -  Universitas Diponegoro, Indonesia
Iwan Saputra  -  Universitas Batanghari, Indonesia
Riska Rahmah Dani Fitri  -  Universitas Batanghari, Indonesia

Citation Format:
Abstract

Leachate resulting from the decomposition of organic waste is still a challenging problem, especially in landfill management.  Constructed wetlands (CW) are effective, economical, and environmentally friendly options to treat landfill leachate. Biochar added into CW as a pollutant adsorbent in leachate treatment.  This study aimed to determine the effectiveness of sub-surface flow CW amended with biochar in reducing leachate pollutants. Biochar was synthesized from crumb rubber scrap waste using pyrolysis. The variation biochar in CW i.e. CW0 without biochar as a control system, CW1 10% biochar, CW2 20% biochar, and CW3 30% biochar.  Leachate samples flowed into each CW reactor for 10 days of retention time.  The scanning electron showed that the biochar pores ranged from 5-10 կm, containing elements of C, O, Ca, N, Mg, Al, Si, and Fe.  Some elements have greater cumulative mass and atomic percentage values i.e. C 34.51%, O 26.54%, and Ca 21.85%.  The result of CW treatment showed that the CW system was able to remove 76-88% BOD5, 70-87% COD, and 67-81% TSS.  The addition of biochar in CW increased pollutant removal by 7-14%, showing that biochar is able to increase pollutant adsorption in wastewater and improve CW performance. Furthermore, converting organic waste into biochar is highly recommended as a sustainable way to generate useful resources.

Fulltext View|Download
Keywords: Biochar; leachate; constructed wetlands

Article Metrics:

Article Info
Section: Original Research Article
Language : EN
  1. Chen. J., Deng. S., Jia. W., Li. X., & Chang. J.2021. Removal of multiple heavy metals from mining-impacted water by biochar-filled constructed wetlands: adsorption and biotic removal routes. Bioresource Technology. 331. 125061
  2. Deng. C., Huang. L., Liang. Y., Xiang. H., Jiang. J., Wang. Q., Hou. J., & Chen. Y. 2019. Response of microbes to biochar strengthen nitrogen removal in subsurface flow constructed wetlands: Microbial community structure and metabolite characteristics. Science of the Total Environment. 694. 133687
  3. Deng. S., Chen. J., & Chang. J. 2021. Application of biochar as an innovative substrate in constructed wetlands/biofilters for wastewater treatment: Performance and ecological benefits. Journal of Cleaner Production. 293. 126156
  4. Feng. L., Gao. Z., Hu. T., He. S., Liu. Y., Jiang. J., Zhao. Q. & Wei. L. 2023. Performance and mechanisms of biochar-based materials additive in constructed wetlands for enhancing wastewater treatment efficiency: A review. Chemical Engineering Journal. 144772
  5. Huang. L., Gu. M. 2019. Effects of biochar on container substrate properties and growth of plantsda review. Horticulturae 5 (1). 14
  6. Jayawardhana. Y., Mayakaduwa. S.S., Kumarathilaka. P., Gamage. S., Vithanage. M. 2019. Municipal Solid Waste-Derived Biochar for The Removal of Benzene from Landfill Leachate. Environ. Geochem. Health. 41: 1739–1753
  7. Ji. B., Chen. J., Mei. J., Chang. J., Li. X., Jia. W., & Qu. Y. 2020. Roles of Biochar Media and Oxygen Supply Strategies in Treatment Performance. Greenhouse Gas Emissions. and Bacterial Community Features of Subsurface-Flow Constructed Wetlands. Bioresource technology. 302. 122890
  8. Jia. L., Jiang. B., Huang. F., Hu. X. (2019). Nitrogen Removal Mechanism and Microbial Community Changes of Bioaugmentation Subsurface Wastewater Infiltration System. Bioresour. Technol. 294. 122140
  9. Joseph. S. M. R., Wijekoon. P., Dilsharan. B., Punchihewa. N. D., Athapattu. B. C. L., & Vithanage. M. 2020. Anammox. Biochar Column and Subsurface Constructed Wetland as An Integrated System for Treating Municipal Solid Waste Derived Landfill Leachate From An Open Dumpsite. Environmental research. 189. 109880
  10. Kaetzl. K., Lübken. M., Nettmann. E., Krimmler. S., & Wichern. M. 2020. Slow sand filtration of raw wastewater using biochar as an alternative filtration media. Scientific reports. 10(1). 1229
  11. Kasak. K., Truu. J., Ostonen. I., Sarjas. J., Oopkaup. K., Paiste. P., Kõiv-Vainik. M., Mander. Ü., Truu. M. 2018. Biochar Enhances Plant Growth and Nutrient Removal In Horizontal Subsurface Flow Constructed Wetlands. Sci. Total Environ., 639: 67–74
  12. Kasman. M., Hadrah. H., & Firmanda. F. 2022. Reduksi COD dan BOD Air Limbah Domestik dengan Konsep Taman Constructed Wetland. Jurnal Daur Lingkungan. 5(1). 1-4
  13. Kumar. S., Dutta. V. 2019. Constructed wetland microcosms as sustainable technology for domestic wastewater treatment: an overview. Environmental Science and Pollution Research 26 (12). 11662e11673
  14. Li. D., Zheng. B., Chu. Z., Liu. Y., & Huang. M. 2019. Seasonal Variations of Performance and Operation in Field-Scale Storing Multipond Constructed Wetlands for Nonpoint Source Pollution Mitigation in A Plateau Lake Basin. Bioresource technology. 280. 295-302
  15. Li. J., Fan. J., Liu. D., Hu. Z., Zhang. J. 2019. Enhanced Nitrogen Removal in Biocharadded Surface Flow Constructed Wetlands: Dealing with Seasonal Variation in The North China Environmental Science and Pollution Research. 26 (4). 3675e3684
  16. Luo. H., Zeng. Y., Cheng. Y., He. D., Pan. X. 2019. Recent Advances in Municipal Landfill Leachate: A Review Focusing on Its Characteristics. Treatment. and Toxicity Assessment. Science of the Total Environment. 703. 135468
  17. Metcalf and Eddy. Inc. 1991. Wastewater Engineering: Treatment. Disposal and Reuse. 3rd ed. McGraw Hill: New York (Revised by G. Tchobanoglous and F.L. Burton) 1334p
  18. Minakshi. D., Sharma. P. K., & Rani. A. 2022. Effect of filter media and hydraulic retention time on the performance of vertical constructed wetland system treating dairy farm wastewater. Environmental Engineering Research. 27(1)
  19. Mohanty. S.K., Valenca. R., Berger. A.W., Iris. K.M., Xiong. X., Saunders. T.M., Tsang. D.C. 2018. Plenty of room for carbon on the ground: potential applications of biochar for stormwater treatment. Science of the Total Environment. 625. 1644e1658
  20. Perdana. M. C., Hadisusanto. S., & Purnama. I. L. S. 2020. Implementation of a full-scale constructed wetland to treat greywater from tourism in Suluban Uluwatu Beach. Bali. Indonesia. Heliyon. 6(10)
  21. Ramadhani. J., Asrifah. R. D., & Widiarti. I. W. 2020. Pengolahan Air Lindi Menggunakan Metode Constructed Wetland di TPA Sampah Tanjungrejo. Desa Tanjungrejo. Kecamatan Jekulo. Kabupaten Kudus. Jurnal Ilmiah Lingkungan Kebumian. 1(2). 1-8
  22. Riyanti. A., Kasman. M., dan Riwan. M. 2019. Efektivitas Penurunan Chemichal Oxygen Demand (COD) dan pH Limbah Cair Industri Tahu Dengan Tumbuhan Melati Air Melalui Sistem Sub-Surface Flow Wetland. Jurnal Daur Lingkungan. 2(1).16-20
  23. Saeed. T., Haque. I., & Khan. T. 2019. Organic Matter and Nutrients Removal in Hybrid Constructed Wetlands: Influence of Saturation. Chemical Engineering Journal. 371. 154-165
  24. Saeed. T., Miah. M. J., Majed. N., Alam. M. K., & Khan. T. 2021. Effect of Effluent Recirculation on Nutrients and Organics Removal Performance of Hybrid Constructed Wetlands: Landfill Leachate Treatment. Journal of Cleaner Production. 282. 125427
  25. Sandoval-Herazo. L. C., Alvarado-Lassman. A., Marín-Muñiz. J. L., Méndez-Contreras. J. M., & Zamora-Castro. S. A. 2018. Effects of the use of ornamental plants and different substrates in the removal of wastewater pollutants through microcosms of constructed wetlands. Sustainability. 10(5). 1594
  26. Singh S. Kumar V. Dhanjal DS. Datta S. Bhatia D. Dhiman J. Samuel J. Prasad R. Singh J. 2020. A Sustainable Paradigm of Sewage Sludge Biochar: Valorization. Opportunities. Challenges And Future Prospects. Journal of Cleaner Production. 269. 122259
  27. Werner. S., Katzl. K., Wichern. M., Buerkert. A., Steiner. C., Marschner. B., 2018. Agronomic Benefits of Biochar as A Soil Amendment After Its Use as Waste Water Filtration Medium. Environmental Pollution. 233. 561e568
  28. Wimbaningrum. R., Arianti. I., & Sulistiyowati. H. 2020. Efektivitas Tanaman Lembang (Typha angustifolia L.) di Lahan Basah Buatan dalam Penurunan Kadar TSS. BOD dan Fosfat pada Air Limbah Industri Laundry. Berkala Sainstek. 8(1). 25-28
  29. Zhao. Y., Ji. B., Liu. R., Ren. B., Wei. T., 2020. Constructed Treatment Wetland: Glance of Development and Future Perspectives. Water Cycle (1). 104e112
  30. Zhou. X., Jia. L., Liang. C., Feng. L., Wang. R., Wu. H., 2018. Simultaneous Enhancement of Nitrogen Removal and Nitrous Oxide Reduction by A Saturated Biochar-Based Intermittent Aeration Vertical Flow Constructed Wetland: Effects of Influent Strength. Journal of Chemistry Engineering. 334: 1842–1850
  31. Zhou. X., Wang. R., Liu. H., Wu. S., & Wu. H. 2019. Nitrogen removal responses to biochar addition in intermittent-aerated subsurface flow constructed wetland microcosms: enhancing role and mechanism. Ecological Engineering. 128: 57-65

Last update:

No citation recorded.

Last update: 2024-12-25 05:05:51

No citation recorded.