skip to main content

Characteristics of Domestic Wastewater from Shopping Centres, Office Buildings, and Hospitals in Jakarta, Indonesia

*Anggit Herman  -  Universitas Sultan Ageng Tirtayasa, Indonesia
Najmi Firdaus  -  Universitas Sultan Ageng Tirtayasa, Indonesia
Juwarin Pancawati  -  Universitas Sultan Ageng Tirtayasa, Indonesia
Thoriq Abidin  -  Toyohashi University of Technology, Japan

Citation Format:
Abstract

Understanding the characteristics of domestic wastewater is crucial for designing effective wastewater treatment facilities that comply with regulatory standards. This study examined key parameters, including pH, BOD, COD, TSS, oil and grease, ammonia nitrogen, and total coliform, outlined by Indonesia’s Ministry of Environment and Forestry (MoEF) under their regulation. Samples were collected monthly over a 12-month period from three types of facilities: shopping centers, office buildings, and hospitals. The results indicated significant variability among the sites. The shopping center recorded the highest concentrations of BOD and TSS, with values of 231 mg/L and 366 mg/L, respectively, while the hospital showed elevated COD levels, reaching 725 mg/L. Its processing requires a wastewater treatment plant that aims to reduce various parameters that exceed the threshold based on the Regulation of the Minister of Environment and Forestry of the Republic of Indonesia Number P.68 /Menlhk/Setjen/Kum I/8/2016 on Domestic Waste Quality Standards. These findings underscore the need for tailored wastewater treatment approaches based on facility type to mitigate environmental impacts and maintain water quality standards. 

Fulltext View|Download
Keywords: Domestic wastewater; BOD; COD; shopping center; office building; hospital

Article Metrics:

Article Info
Section: Regional Case Study
Language : EN
  1. Al-Gheethi, A., Mohamed, R.M.S.R., Nyokiew, W., Noman, E. and Kassim, A.H.M., 2019. Establish in-house: A pre-treatment method of fat, oil and grease (FOG) in kitchen wastewater for safe disposal. International journal of integrated engineering, 11, pp.171–177
  2. Alam, M.Z., Fakhru’l-Razi, A. and Molla, A.H., 2003. Biosolids accumulation and biodegradation of domestic wastewater treatment plant sludge by developed liquid state bioconversion process using a batch fermenter. Water research, 37, pp.3569–3578
  3. Alsaqqar, A.S., Khudair, B.H. and Mekki, A., 2023. Assessment efficiency evaluation of Al-Diwaniya sewage treatment plant in Iraq. Journal of engineering, 20, pp.20–32
  4. Anurogo, W., Gayatri, G., Fauzi, M., Lubis, M. and Ghazali, M., 2023. Waters quality assessment on physical-chemical parameters using remote sensing technologies: Criteria for total suspended solids and waters transparency
  5. Aristiami, D.F. and Widiasa, I.N., 2015. Pengaruh co-precipitation besi klorida terhadap kinerja lumpur aktif pada proses pengolahan air limbah domestik sintetik. Reaktor, 15, p.182
  6. Bachri, J., Handoko, C.T., Jimmyanto, H. and Susanti, S., 2024. The domestic wastewater treatment installation’s performance study of technical aspects in Cahaya Abadi Housing, Palembang City. Enviro: Journal of tropical environmental research, 25, p.1
  7. Badan Standarisasi Nasional, 2009. SNI 6989.72:2009 tentang cara uji kebutuhan oksigen biokimia (biochemical oxygen demand/BOD). Air dan air limbah-Bagian 72 Cara uji Kebutuhan Oksigen Biokimia (Biochemical Oxyg. Demand/ BOD), pp.1–20
  8. Chan, S.S. and Wu, J.H., 2022. Improving the performance of the reverse osmosis process with fiber filter and ultrafiltration: Promoting municipal sewage reclamation and reuse for industrial processes. Sustainability, 14
  9. Chanchaldas, P.J., 2023. Ammonia manufacturing plant using the SPSS method. REST journal of data analysis artificial intelligence, 1, pp.36–44
  10. Che, X., Tian, Z., Sun, F., Liu, Q., Bi, Z., Chen, H. and Cui, Z., 2022. Research on chemical oxygen demand based on laser fluorescence-Raman spectroscopy. Frontiers in physics, 10, pp.1–7
  11. Cruz, H., 2020. Tailored polymer hydrogels for mainstream ammonium recovery in domestic wastewater. A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland. University of Queensland
  12. Cushing, S., 2022. Electrifying chemical transformations and separations to valorize wastewater nitrogen. Electrochemical society interface, 31, pp.49a-49a
  13. Dehghani, M.H., Omrani, G.A. and Karri, R.R., 2021. Solid waste—sources, toxicity, and their consequences to human health. Soft computing techniques for solid waste and wastewater management, pp.205–213
  14. Dhall, P., Kumar, R. and Kumar, A., 2012. Biodegradation of sewage wastewater using autochthonous bacteria. ScientificWorldJournal, 2012
  15. Djoharam, V., Riani, E. and Yani, M., 2018. Analisis kualitas air dan daya tampung beban pencemaran Sungai Pesanggrahan di wilayah Provinsi DKI Jakarta. Jurnal pengelolaan sumber daya alam dan lingkungan (Journal of natural resources and environmental management), 8, pp.127–133
  16. Doraja, P.H., Shovitri, M. and Kuswytasari, N.D., 2012. Biodegradasi limbah domestik dengan menggunakan inokulum alami dari tangki septik. Jurnal sains dan seni ITS, 1, pp.44–47
  17. du Plessis, A., 2022. Persistent degradation: Global water quality challenges and required actions. One earth, 5, pp.129–131
  18. Edi Minarno, P., Suprapto, A. and Harsono, 2022. Pollution load capacity of the Larangan/Premulung River Sukoharjo Regency, Central Java Province, Indonesia in 2020. IOP conference series: Earth and environmental science, 1016
  19. Edokpayi, J.N., Odiyo, J.O., Edokpayi, N. and Durowoju, O.S., 2017. Household hazardous waste management in — impact of wastewater on surface water quality in sub-Saharan Africa developing countries: A case study of South Africa. Water quality, 428
  20. Eko, M. and Romayanto, W., 2006. Pengolahan limbah domestik dengan aerasi dan penambahan bakteri Pseudomonas putida. Bioteknologi, 3, pp.42–49
  21. Ficrah Huda, E., 2023. Monitoring system ammonia concentration using fiber optic sensor based surface plasmon resonance. Journal of physics: Theory and applications, 7, p.191
  22. Fikri, E., Hanifati, D. and Hidayah, N., 2021. Differences in thickness variations of activated carbon in decreasing oil and grease levels using modified grease trap on the canteen wastewater. Science review of engineering and environmental science, 30, pp.106–116
  23. García, L.S.M., Martínez, C.A.T. and Díaz, A.E., 2013. Analysis of wastewater treatment plant processes (WWTP) “sedimentation.” Electronic vision, 7, pp.172–185
  24. Gupta, A.B. and Anjali, 2017. Enhancement of performance of ASP for organics removal using return sludge as flocculent in primary settling tank. International journal of advanced research ideas and innovation in technology, 3, pp.1164–1176
  25. Halim, M.H.A., Anuar, A.N., Cheliapan, S., Wahab, N.A., Basri, H.F., Ujang, Z. and Bob, M.M., 2019. Development of aerobic granules in sequencing batch reactor system for treating high temperature domestic wastewater. Jurnal teknologi, 81, pp.57–66
  26. Handriyono, R.E. and Rukmi, A.K., 2022. Redesign of anaerobic-aerobic biofilter for domestic wastewater treatment plant in textile industry. Journal of civil engineering planning and design, 1, pp.16–22
  27. Haryani, M.F., Fachrul, M.F. and Hadisoebroto, R., 2020. Removal of BOD and COD concentration in wastewater using constructed wetland. International journal of science and technology research, 9, pp.1466–1469
  28. Hidayah, E.N., Djalalembah, A. and Asmar, G.A., Cahyonugroho, O.H., 2018. Pengaruh aerasi dalam constructed wetland pada pengolahan air limbah domestik. Jurnal ilmu lingkungan, 16, p.155
  29. Ishak, A., Mohamad, E. and Hambali, A., Johari, N.L., 2022. The reliability and process capability assessment of suspended growth sewage treatment plant in Melaka, Malaysia. Water science and technology, 86, pp.2233–2247
  30. Ismaini, I., Tosani, N. and Sutanto, D., 2023. Perbandingan unjuk kinerja berbagai tipe pH meter digital pada pengujian sampel tanah dan air berdasarkan ISO 17025:2017. Jurnal penelitian sains, 25, p.24
  31. Jasim, M.A. and Aljaberi, F.Y., 2023. Treatment of oily wastewater by electrocoagulation technology: A general review (2018-2022). Journal of electrochemical science and engineering, 13, pp.361–372
  32. Khan, A., Khan, S.J., Miran, W., Zaman, W.Q. and Aslam, A., Shahzad, H.M.A., 2023. Feasibility study of anaerobic baffled reactor coupled with anaerobic filter followed by membrane filtration for wastewater treatment. Membranes (Basel), 13
  33. Khashroum, A.O., 2024. Climate change effect on the characteristics of raw domestic wastewater, sedimentation pond water, and treated wastewater. Tikrit journal of agricultural sciences, 24, pp.246–259
  34. Koul, B., Yadav, D., Singh, S., Kumar, M. and Song, M., 2022. Insights into the domestic wastewater treatment (DWWT) regimes: A review. Water (Switzerland), 14
  35. Kozak, M., Göçer, S., Duyar, A., Ayranpinar, İ. and Köroğlu, E.O., Cirik, K., 2022. Investigation of biofilm formation on Kaldnes K1. Kahramanmaras Sutcu Imam university journal of engineering science, 25, pp.565–569
  36. Lusiana, M., Nasution, S. and Anita, S., 2020. Evaluasi pengolahan air limbah domestik dengan instalasi pengolahan air limbah (IPAL) komunal di Desa Siabu Kecamatan Salo Kabupaten Kampar. Berkala perikanan terubuk, 48
  37. Maciołek, P., Szymanski, K. and Schmidt, R., 2018. Impact of sedimentation supported by coagulation process on effectiveness of separation of the solid phase from wastewater stream. Journal of ecological engineering, 19, pp.81–87
  38. Maddah, H.A., 2022. Predicting optimum dilution factors for BOD sampling and desired dissolved oxygen for controlling organic contamination in various wastewaters. International journal of chemical engineering, 2022
  39. Marek, K., Pawęska, K. and Bawiec, A., 2021. Treatment of wastewater with high ammonium nitrogen concentration. Journal of ecological engineering, 22, pp.224–231
  40. McCarty, P.L. and Smith, D.P., 1986. Anaerobic wastewater treatment. Environmental science and technology
  41. Menteri Lingkungan Hidup dan Kehutanan, 2016. Peraturan Menteri Lingkungan Hidup dan Kehutanan Republik Indonesia Nomor R: P.68/Menlhk-Setjen/2016 tentang baku mutu air limbah domestik. Peraturan Menteri Lingkungan Hidup dan Kehutanan Republik Indonesia
  42. Milani, S.J. and Bidhendi, G.N., 2022. A review on the potential of common disinfection processes for the removal of virus from wastewater. International journal of environmental research, 16, pp.1–11
  43. Mubin, F., Binilang, A. and dkk, 2016. Perencanaan sistem pengolahan air limbah domestik di Kelurahan Istiqlal Kota Manado. Sipil statis, 4, pp.211–223
  44. Mulyati, S.A., Azizah, M., Srikandi, S. and Maidaswar, M., Atikah, N., 2022. The effectiveness of chlorine tablets to reducing coliform in wastewater treatment plant. Jurnal sains dan natural, 12, p.10
  45. Mustofa, N. and Febriyana, L., 2024. Analisis kadar chemical oxygen demand (COD) pada air limbah domestik dengan metode refluks menggunakan spektrofotometer UV-Vis. JRSKT - Jurnal riset sains dan kimia terapan, 10, pp.139–146
  46. Neles, N., Adami, A., Ilham, I. and Wibowo, D., 2020. Penerapan geometri dalam perencanaan instalasi pengolahan air limbah domestik: Studi kasus perumahan Mutiara Sartika, Kota Kendari. Al-Ard jurnal teknik lingkungan, 6, pp.1–9
  47. Omar, A., Almomani, F., Qiblawey, H. and Rasool, K., 2024. Advances in nitrogen-rich wastewater treatment: A comprehensive review of modern technologies. Sustainability, 16, pp.1–37
  48. Paśmionka, I.B., Herbut, P., Kaczor, G., Chmielowski, K., Gospodarek, J., Boligłowa, E. and Bik-Małodzińska, M., Vieira, F.M.C., 2022. Influence of COD in toxic industrial wastewater from a chemical concern on nitrification efficiency. International journal of environmental research and public health, 19
  49. Pramyani, I.A.P.C. and Marwati, N.M., 2020. Efektivitas metode aerasi dalam menurunkan kadar biochemical oxygen demand (BOD) air limbah laundry. Jurnal kesehatan lingkungan, 10, pp.88–99
  50. Prasetyo, C. purnomo, 2022. Pengaruh air limbah domestik pada kualitas air tanah di Kelurahan Bandar Kidul Kota Kediri. Jurnal tecnoscienza, 7, pp.115–133
  51. Putri, A.I. and Arisalwadi, M., 2023. Analysis of the influence between turbidity value on total suspended solid (TSS) value at the river water surface in Kutai Kartanegara. Frontiers in advanced applied science and engineering, 1, pp.14–20
  52. Rachmawati, S., Irmawartini and Kahar, 2021. Penurunan kadar minyak dan lemak limbah cair penyamakan kulit menggunakan media saring karbon aktif. Jurnal kesehatan siliwangi, 2, pp.431–439
  53. Rafati, M., Pazouki, M., Ghadamian, H., Hosseinnia, A. and Jalilzadeh, A., 2018. Effect of operating parameters on the performance of wastewater treatment plant (case study: The southern Tehran wastewater treatment). Advances in environmental technology, 4, pp.211–221
  54. Ratnasari, F., Widyastuti, A., Sudaryanti, C., Trisnawati As’yat, A. and Magdalena, R., 2022. Pengabdian masyarakat pemilihan alat kontrasepsi di Desa Babakan Asem Teluk Naga Tangerang. Comserva Indonesian journal of community service and development, 2, pp.165–171
  55. Saboski, E.M. and Swanson, K., 1981. An investigation of biologically adjusted pH changes in domestic sewage effluent
  56. Said, N.I. and Firly, F., 2018. Uji performance biofilter anaerobik unggun tetap menggunakan media biofilter sarang tawon untuk pengolahan air limbah rumah potong ayam. Jurnal air Indonesia, 1, pp.289–303
  57. Sinclair, J.S., Fraker, M.E., Hood, J.M., Reavie, E.D. and Ludsin, S.A., 2023. Eutrophication, water quality, and fisheries: A wicked management problem with insights from a century of change in Lake Erie. Ecology and society, 28
  58. Sumiyati, S., Purwanto, P. and Sudarno, S., 2018. Decreasing of BOD concentration on artificial domestic wastewater using anaerob biofilter reactor technology. E3S web of conferences, 31, pp.2017–2019
  59. Ukpong, E. and Udechukwu, J., 2015. Analysis of coliform bacteria in WSPs at ALSCON using macconkey broth and locally made solution. Global journal of engineering research, 13, p.21
  60. Utami, L.I., Wahyusi, K.N. and Utari, Y.K., Wafiyah, K., 2019. Pengolahan limbah cair rumput laut secara biologi aerob proses batch. Jurnal teknik kimia, 13, pp.39–43
  61. Utari, A.W. and Herdiansyah, H., 2020. Using filtration as a technology to remove pollutants in domestic wastewater. IOP conference series: Materials science and engineering, 725
  62. Valipour, A., Taghvaei, S.M., Raman, V.K., Gholikandi, G.B., Jamshidi, S. and Hamnabard, N., 2014. An approach on attached growth process for domestic wastewater treatment. Environmental engineering and management journal, 13, pp.145–152
  63. Wang, L., Li, H., Wang, X., Liu, X., Ma, W., Zhou, G. and Liang, Q., Lan, H., 2022. GO/iron series systems enhancing the pH shock resistance of anaerobic systems for sulfate-containing organic wastewater treatment. RSC advances, 12, pp.20983–20990
  64. Widyarani, Wulan, D.R., Hamidah, U., Komarulzaman, A., Rosmalina, R.T. and Sintawardani, N., 2022. Domestic wastewater in Indonesia: Generation, characteristics and treatment. Environmental science and pollution research, 29, pp.32397–32414
  65. Wirawan, S.M.S., 2020. Community preparation for domestic wastewater management development in Jakarta. International journal of innovative science research and technology, 5, pp.133–143
  66. Wong, N.H., Law, P.L. and Lai, S.H., 2007. Field tests on a grease trap effluent filter. International journal of environmental science and technology, 4, pp.345–350
  67. Yolanda, V.C. and Heriyanti, A.P., 2024. Wastewater quality characteristics test in domestic wastewater treatment plant Dinas Lingkungan Hidup Kota Semarang. Indonesian journal of earth and humanities, 1, pp.44–52
  68. Zhu, L., Hao, J., Lai, H. and Li, G., 2022. Effects of pH adjustment on the release of carbon source of particulate organic matter (POM) in domestic sewage. Sustainability, 14, pp.1–15
  69. Zubaidah, T., Hamzani, S. and Arifin, A., 2024. Revitalizing water health: Unraveling coliform dynamics in Banjar Regency’s river ecosystem. Journal of health science and prevention, 8, pp.48–52
  70. Zulfikar, Z., Nasrullah, N., Kartini, K. and Aditama, W., 2022. Effect of hydraulic retention time on the levels of biochemical oxygen demand and total suspended solid with simple integrated treatment as an alternative to meet the household needs for clean water. Open access Macedonian journal of medical sciences, 10, pp.6–11
  71. Zuo, J., Li, J., Xia, Z. and Tan, C., 2021. Nutrient removal and energy consumption of aerobic granule system treating low-strength wastewater at low dissolved oxygen conditions. Desalination and water treatment, 212, pp.121–128

Last update:

No citation recorded.

Last update: 2025-08-01 06:41:08

No citation recorded.