skip to main content

Effect of Non-Thermal Plasma on Biochar Properties from Sugarcane Bagasse and Banana Peel

*Denny Dermawan orcid scopus publons  -  Politeknik Perkapalan Negeri Surabaya, Indonesia
Aulia Diva Satriavi  -  Politeknik Perkapalan Negeri Surabaya, Indonesia
Dyah Isna Nurhidayati  -  Politeknik Perkapalan Negeri Surabaya, Indonesia
Dwi Rasy Mujiyanti  -  Chung Yuan Christian University, Taiwan
Nora Amelia Novitrie  -  Politeknik Perkapalan Negeri Surabaya, Indonesia
Novi Eka Mayangsari  -  Politeknik Perkapalan Negeri Surabaya, Indonesia
Adhi Setiawan  -  Politeknik Perkapalan Negeri Surabaya, Indonesia

Citation Format:
Abstract

Biochar produced from agricultural waste, such as sugarcane bagasse and banana peel, has gained significant attention due to its potential environmental and industrial applications. This study aimed to enhance the physicochemical properties of biochar derived from these wastes using non-thermal plasma treatment. Biochar was produced via pyrolysis combined with non-thermal plasma treatment and then characterized to identify the differences. Characterization was performed using XRD (X-ray Diffraction), SEM (Scanning Electron Microscopy), FTIR (Fourier Transform Infrared Spectroscopy), and BET (Brunauer-Emmett-Teller) surface area analysis to evaluate changes in crystallinity, morphology, functional groups, and surface area. Non-thermal plasma treatment significantly altered the surface morphology of the biochar, increasing its porosity and surface area. The BET surface area of sugarcane bagasse waste was 0.061 m²/g, which expanded to 87.50 m²/g after changing to biochar, whereas banana peel waste had a BET surface area of 0.007 m²/g, which increased to 427.2 m²/g after changed to biochar. The pyrolysis process on both biochars also reduced OH (hydroxyl) transmittance, as evidenced by FTIR analysis, which indicated water evaporation. Non-thermal plasma treatment substantially improved the physical and chemical properties of biochar compared to untreated biomass.

Note: This article has supplementary file(s).

Fulltext View|Download |  Cover Letter
Cover Letter
Subject Biochar, non-thermal plasma, sugarcane bagasse, banana peel, surface area, crystallinity, functional groups
Type Cover Letter
  Download (15KB)    Indexing metadata
Keywords: Biochar; non-thermal plasma; sugarcane bagasse; banana peel; surface area; crystallinity; functional groups
Funding: Politeknik Perkapalan Negeri Surabaya

Article Metrics:

  1. Ahmad, A., Khan, N., Giri, B.S., Chowdhary, P. & Chaturvedi, P. 2020, 'Removal of Methylene Blue Dye Using Rice Husk, Cow Dung, and Sludge Biochar: Characterization, Application, And Kinetic Studies', Bioresource Technology, vol. 306
  2. Ahmadi, M., Kouhgardi, E. & Ramavandi, B. 2016, 'Physico-chemical study of dew melon peel biochar for chromium attenuation from simulated and actual wastewaters', Korean Journal of Chemical Engineering, vol. 33, pp. 2589–2601. doi.org: 10.1007/s11814-016-0135-1
  3. Alghyamah, A.A., Elnour, A.Y., Shaikh, H., Haider, S., Poulose, A.M., Al-Zahrani, S.M., Almasry, W.A. & Park, S.Y. 2021, 'Biochar/polypropylene composites: A study on the effect of pyrolysis temperature on crystallization kinetics, crystalline structure, and thermal stability', Journal of King Saud University - Science, vol. 33, p. 101409. doi.org:10.1016/j.jksus.2021.101409
  4. Anita, S.H., Mangunwardoyo, W. & Yopi, Y. 2016, 'Sugarcane bagasse as a carrier for the immobilization of Saccharomyces cerevisiae in bioethanol production', Makara Journal of Technology, vol. 20, no. 2, p. 4
  5. An, Q., Jin, N., Deng, S., Zhao, B., Liu, M., Ran, B. & Zhang, L. 2022, 'Ni(II), Cr(VI), Cu(II) and Nitrate Removal by The Co-System of Pseudomonas hibiscicola strain L1 Immobilized on Peanut Shell Biochar', Science of The Total Environment, vol. 814, p. 152635
  6. Atinafu, D.G., Choi, J.Y., Nam, J., Kang, Y. & Kim, S. 2025, 'Insights into the effects of biomass feedstock and pyrolysis conditions on the energy storage capacity and durability of standard biochar-based phase-change composites', Biochar, vol. 7, p. 18. doi: 10.1007/s42773-024-00396-1
  7. Bachrun, S., Ayu Rizka, N., Annisa, S. & Arif, H. 2016, 'Preparation and characterization of activated carbon from sugarcane bagasse by physical activation with CO2 gas', IOP Conference Series: Materials Science and Engineering, vol. 105, no. 1, p. 012027
  8. Chen, B., Zhou, D. & Zhu, L. 2008, 'Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures', Environmental Science & Technology, vol. 42, pp. 5137–5143. doi: 10.1021/es8002684
  9. Chen, S., Li, M., Wu, Y. & Wang, Y. 2021, 'Activated Carbon Fiber-Supported Nano Zero Valent Iron on Cr(VI) Removal', IOP Conference Series: Earth and Environmental Science
  10. De Muñiz, GIB, Carneiro, ME, Nisgoski, S, Ramirez, MGL & Magalhaes, WLE 2013, 'SEM and NIR Characterization of Four Forest Species Charcoal', Wood Science and Technology, vol. 47, no. 4, pp. 815–823
  11. Dermawan, D, Hieu, VT, Wang, YF & You, SJ 2023, 'A Novel Magnetic Fe3O4 Carbon-Shell (MFC) Functionalization with Lanthanum as An Adsorbent for Phosphate Removal from Aqueous Solution', International Journal of Environmental Science and Technology, vol. 20, no. 4, pp. 3861–3874
  12. Dermawan, D, Febrianti, AN, Setyawati, EEP, Pham, MT, Jiang, JJ, You, SJ & Wang, YF 2022, 'The potential of transforming rice straw (Oryza sativa) and golden shower (Cassia fistula) seed waste into high-efficiency biochar by atmospheric pressure microwave plasma', Industrial Crops and Products, vol. 185, pp. 115122
  13. Dwiyaniti, M, Barruna, AE, Naufal, RM, Subiyanto, I, Setiabudy, R & Hudaya, C 2020, 'Extremely high surface area of activated carbon originated from sugarcane bagasse', IOP Conference Series: Materials Science and Engineering, IOP Publishing
  14. Heniegal, AM, Ramadan, MA, Naguib, A & Agwa, IS 2020, 'Study on properties of clay brick incorporating sludge from water treatment plants and agricultural waste', Case Studies in Construction Materials, vol. 13, e00397
  15. Homagai, PL, Ghimire, KN & Inoue, K 2010, 'Adsorption behavior of heavy metals onto chemically modified sugarcane bagasse', Bioresource Technology, vol. 101, no. 6, pp. 2067–2069
  16. Hossain, MA, Ngo, HH, Guo, WS & Nguyen, TV 2012, 'Removal of copper from water by adsorption onto banana peel as bioadsorbent', Int. J. GEOMATE, vol. 2, pp. 227–234, doi: 10.21660/2012.4.3c
  17. Hrabovsky, M & van der Walt, IJ 2018, 'Plasma waste destruction', Handbook of Thermal Science and Engineering, doi: 10.1007/978–3-319–26695-4_32
  18. Jonglertjunya, W, Juntong, T, Pakkang, N, Srimarut, N & Sakdaronnarong, C 2014, 'Properties of lignin extracted from sugarcane bagasse and its efficacy in maintaining postharvest quality of limes during storage', LWT-Food Science and Technology, vol. 57, no. 1, pp. 116–125
  19. Kalpana, M & Nagalakshmi, R 2023, 'Effect of reaction temperature and pH on structural and morphological properties of hydroxyapatite from precipitation method', Journal of the Indian Chemical Society, vol. 100, no. 4, 100947
  20. Kang, H, Choi, S, Lee, JH, Kim, KT, Song, YH & Lee, DH 2020, 'Plasma Jet Assisted Carbonization and Activation of Coffee Ground Waste', Environment International, vol. 145
  21. Khairiah, K, Frida, E, Sebayang, K, Sinuhaji, P & Humaidi, S 2021, 'Data on characterization, model, and adsorption rate of banana peel-activated carbon (Musa Acuminata) for adsorbents of various heavy metals (Mn, Pb, Zn, Fe)', Data Br., vol. 39, 107611, doi: 10.1016/j.dib.2021.107611
  22. Kominfo Jatim 2022, 'Pertahankan Predikat Barometer Nasional, Produksi Gula dan Tebu Jatim Sumbang 49,55 % Nasional', Kominfojatim.go.id
  23. Kurniati, M, Nurhayati, D & Maddu, A 2017, 'Study of Structural and Electrical Conductivity of Sugarcane Bagasse-Carbon with Hydrothermal Carbonization', IOP Conference Series: Earth and Environmental Science, Institute of Physics Publishing, doi: 10.1088/1755-1315/58/1/012049
  24. Leng, L, Xiong, Q, Yang, L, Li, H, Zhou, Y, Zhang, W, Jiang, S, Li, H & Huang, H 2021, 'An overview on engineering the surface area and porosity of biochar', Science of The Total Environment, vol. 763, 144204, doi: 10.1016/j.scitotenv.2020.144204
  25. Machado, AA & Mulky, L 2023, 'A Comparative Study of Treatment Methods of Raw Sugarcane Bagasse for Adsorption of Oil and Diesel', Water Air Soil Pollut., vol. 234, 213
  26. Martins Torres, S, Estolano de Lima, V, De Azevedo Basto, P, De Araujo Junior, NT & De Melo Neto, AA 2020, 'Assessing the Pozzolanic Activity of Sugarcane Bagasse Ash Using X-Ray Diffraction', Construction and Building Materials, vol. 264
  27. Qureashi, A, Pandith, AH, Bashir, A, Malik, LA, Manzoor, T, Sheikh, FA, Fatima, K, Haq, Z 2023, 'Electrochemical Analysis of Glyphosate Using Porous Biochar Surface Corrosive nZVI Nanoparticles', Nanoscale Advances, vol. 5, no. 3, pp. 742–755
  28. Raj, R & Tirkey, JV 2023, 'Techno-economic assessment of sugarcane bagasse pith-based briquette production and performance analysis of briquette feed gasifier-engine system', Journal of Environmental Management, vol. 345, 118828
  29. Raut, NA, Kokare, DM, Randive, KR, Bhanvase, BA & Dhoble, SJ 2023, 'Introduction: fundamentals of waste removal technologies', 360-Degree Waste Management, Volume 1, pp. 1–16
  30. Sanito, R.C., You, S.J., Chang, G.M., & Wang, Y.F. 2020. 'Effect of shell powder on the removal of metals and volatile organic compounds (VOCs) from resin in an atmospheric pressure microwave plasma reactor', Journal of Hazardous Materials, 394, 122558. doi: 10.1016/j.jhazmat.2020.122558
  31. Sarbon, N.M., Sandanamsamy, S., Kamaruzaman, S.F.S., & Ahmad, F. 2014. 'Chitosan extracted from mud crab (Scylla olivicea) shells: Physicochemical and antioxidant properties', Journal of Food Science and Technology, 52(7), pp. 4266–4275
  32. Satyam, S., & Patra, S. 2024. 'Innovations and challenges in adsorption-based wastewater remediation: A comprehensive review', Heliyon, 10(9), e29573. https://doi.org/10.1016/j.heliyon.2024.e29573
  33. Scheufele, F.B., Ribeiro, C., Módenes, A.N., Rodolfo, F., Quinones, E., Bergamasco, R., & Pereira, N.C. 2015. 'Assessment of Drying Temperature of Sugarcane Bagasse on Sorption of Reactive HAp 5g Dye', Fibers and Polymers, 16(8), pp. 1646–1656
  34. Schott, J.A., Do-Thanh, C.L., Shan, W., Puskar, N.G., Dai, S., & Mahurin, S.M. 2021. 'FTIR Investigation of The Interfacial Properties and Mechanisms of CO2 Sorption in Porous Ionic Liquids', Green Chemical Engineering, 2(4), pp. 392–401
  35. Setiawan, A., Dianti, L.R., Mayangsari, N.E., Widiana, D.R., & Dermawan, D. 2023. 'Removal of Methylene Blue Using Heterogeneous Fenton Process with Fe-Impregnated Kepok Banana (Musa Acuminate L.) Peel Activated Carbon as a Catalyst', Inorganic Chemistry Communications, 152
  36. Shyam, S., Ahmed, S., Joshi, S.J., & Sarma, H. 2025. 'Biochar as a Soil Amendment: Implications for Soil Health, Carbon Sequestration, and Climate Resilience', Discovery Soil, 2, 18. doi: 10.1007/s44378-025-00041-8
  37. Somyanonthanakun, W., Ahmed, R., Krongtong, V., & Thongmee, S. 2023. 'Studies on the adsorption of Pb(II) from aqueous solutions using sugarcane bagasse-based modified activated carbon with nitric acid: Kinetic, isotherm, and desorption', Chemical Physics Impact, 6, 100181
  38. Taufani, M.R.I. 2023. 'Bensin Bioethanol Takkan Ganggu Gula Konsumsi? Cek Datanya', CNBC Indonesia
  39. Torres, S.M., Estolano de Lima, V., de Azevedo Basto, P., de Araújo Júnior, N.T., & de Melo Neto, A.A. 2020. 'Assessing the pozzolanic activity of sugarcane bagasse ash using X-ray diffraction', Construction and Building Materials, 264. https://doi.org/10.1016/j.conbuildmat.2020.120684
  40. Wang, S., Zhao, M., Zhou, M., Li, Y.C., Wang, J., Gao, B., Sato, S., Feng, K., Yin, W., Igalavithana, A.D., Oleszczuk, P., Wang, X., & Ok, Y.S. 2019. 'Biochar-supported nZVI (nZVI/BC) for contaminant removal from soil and water: A critical review', Journal of Hazardous Materials, 373, pp. 820–834. doi: 10.1016/j.jhazmat.2019.03.080
  41. Xue, Y., Kamali, M., Liyakat, A., Bruggeman, M., Muhammad, Z., Rossi, B., Costa, M.E.V., Appels, L., & Dewil, R. 2023. 'A Walnut Shell Biochar-nano Zero-Valent Iron Composite Membrane for the Degradation of Carbamazepine via Persulfate Activation', Science of the Total Environment, 899. doi: 10.1016/j.scitotenv.2023.165535
  42. Yargiç, A.S., Yarbay Sahin, R.Z., Ozbay, N., & Onal, E. 2015. 'Assessment of Toxic Copper(II) Biosorption from Aqueous Solution by Chemically-Treated Tomato Waste', Journal of Cleaner Production, 88, pp. 152–159
  43. Yhon, J., Mendoza, J., Osorio, E., & Domínguez, M.P. 2023. 'Continuous Removal of Dyes from Wastewater Using Banana-Peel Bioadsorbent: A Low-Cost Alternative for Wastewater Treatment', Sustainability, 15(13), 9870
  44. Yoo, S., Kelley, S.S., Tilotta, D.C., & Park, S. 2018. 'Structural Characterization of Loblolly Pine Derived Biochar by X-Ray Diffraction and Electron Energy Loss Spectroscopy', ACS Sustainable Chemistry and Engineering, 6(2), pp. 2621–2629
  45. Zafeer, M.K., Menezes, R.A., Venkatachalam, H., & Subrahmanya Bhat, K. 2024. 'Sugarcane Bagasse-Based Biochar and Its Potential Applications: A Review', Emergent Materials, 7, pp. 133–161. doi.org:10.1007/s42247-023-00603-y
  46. Zhang, X.F., & Zhang, Z. (eds). 2001. Progress in Transmission Electron Microscopy 1: Concepts and Techniques; 2: Applications in Materials Science. Springer, Berlin

Last update:

No citation recorded.

Last update: 2025-06-15 05:08:00

No citation recorded.