skip to main content

Effect of Non-Thermal Plasma on Biochar Properties from Sugarcane Bagasse and Banana Peel

*Denny Dermawan orcid scopus publons  -  Politeknik Perkapalan Negeri Surabaya, Indonesia
Aulia Diva Satriavi  -  Politeknik Perkapalan Negeri Surabaya, Indonesia
Dyah Isna Nurhidayati  -  Politeknik Perkapalan Negeri Surabaya, Indonesia
Dwi Rasy Mujiyanti  -  Chung Yuan Christian University, Taiwan
Nora Amelia Novitrie  -  Politeknik Perkapalan Negeri Surabaya, Indonesia
Novi Eka Mayangsari  -  Politeknik Perkapalan Negeri Surabaya, Indonesia
Adhi Setiawan  -  Politeknik Perkapalan Negeri Surabaya, Indonesia

Citation Format:
Abstract

Biochar produced from agricultural waste, such as sugarcane bagasse and banana peel, has gained significant attention owing to its potential environmental and industrial applications. This study aimed to enhance the physicochemical properties of biochar derived from these wastes using nonthermal plasma treatment. Biochar was produced via pyrolysis combined with non-thermal plasma treatment and then characterized to identify the differences. Characterization was performed using X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and–Brunauer–Emmett Teller (Brunauer-Emmett-Teller) surface area analysis to evaluate changes in crystallinity, morphology, functional groups, and surface area. Nonthermal plasma treatment significantly altered the surface morphology of biochar, increasing its porosity and surface area. The BET surface area of sugarcane bagasse waste was 0.061 m²/g, which expanded to 87.50 m²/g after changing to biochar, whereas banana peel waste had a BET surface area of 0.007 m²/g, which increased to 427.2 m²/g after changed to biochar. The pyrolysis process on both biochars also reduced OH (hydroxyl) transmittance, as evidenced by FTIR analysis, which indicated water evaporation. Non-thermal plasma treatment substantially improved the physical and chemical properties of biochar compared to untreated biomass.

Fulltext View|Download
Keywords: Biochar; non-thermal plasma; sugarcane bagasse; banana peel; surface area; crystallinity; functional groups
Funding: Politeknik Perkapalan Negeri Surabaya

Article Metrics:

Article Info
Section: Original Research Article
Language : EN
  1. Ahmad, A., Khan, N., Giri, B.S., Chowdhary, P. and Chaturvedi, P., 2020. Removal of methylene blue dye using rice husk, cow dung, and sludge biochar: Characterization, application, and kinetic studies. Bioresource Technology, 306
  2. Ahmadi, M., Kouhgardi, E. and Ramavandi, B., 2016. Physico-chemical study of dew melon peel biochar for chromium attenuation from simulated and actual wastewaters. Korean Journal of Chemical Engineering, 33, pp.2589–2601
  3. Alghyamah, A.A., Elnour, A.Y., Shaikh, H., Haider, S., Poulose, A.M., Al-Zahrani, S.M., Almasry, W.A. and Park, S.Y., 2021. Biochar/polypropylene composites: A study on the effect of pyrolysis temperature on crystallization kinetics, crystalline structure, and thermal stability. Journal of King Saud University - Science, 33, p.101409
  4. Anita, S.H., Mangunwardoyo, W. and Yopi, Y., 2016. Sugarcane bagasse as a carrier for the immobilization of Saccharomyces cerevisiae in bioethanol production. Makara Journal of Technology, 20(2), p.4
  5. An, Q., Jin, N., Deng, S., Zhao, B., Liu, M., Ran, B. and Zhang, L., 2022. Ni(II), Cr(VI), Cu(II) and nitrate removal by the co-system of Pseudomonas hibiscicola strain L1 immobilized on peanut shell biochar. Science of The Total Environment, 814, p.152635
  6. Atinafu, D.G., Choi, J.Y., Nam, J., Kang, Y. and Kim, S., 2025. Insights into the effects of biomass feedstock and pyrolysis conditions on the energy storage capacity and durability of standard biochar-based phase-change composites. Biochar, 7, p.18
  7. Bachrun, S., Ayu Rizka, N., Annisa, S. and Arif, H., 2016. Preparation and characterization of activated carbon from sugarcane bagasse by physical activation with CO2 gas. IOP Conference Series: Materials Science and Engineering, 105(1), p.012027
  8. Chen, B., Zhou, D. and Zhu, L., 2008. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environmental Science & Technology, 42, pp.5137–5143
  9. Chen, S., Li, M., Wu, Y. and Wang, Y., 2021. Activated carbon fiber-supported nano zero valent iron on Cr(VI) removal. IOP Conference Series: Earth and Environmental Science
  10. De Muñiz, G.I.B., Carneiro, M.E., Nisgoski, S., Ramirez, M.G.L. and Magalhaes, W.L.E., 2013. SEM and NIR characterization of four forest species charcoal. Wood Science and Technology, 47(4), pp.815–823
  11. Dermawan, D., Hieu, V.T., Wang, Y.F. and You, S.J., 2023. A novel magnetic Fe3O4 carbon-shell (MFC) functionalization with lanthanum as an adsorbent for phosphate removal from aqueous solution. International Journal of Environmental Science and Technology, 20(4), pp.3861–3874
  12. Dermawan, D., Febrianti, A.N., Setyawati, E.E.P., Pham, M.T., Jiang, J.J., You, S.J. and Wang, Y.F., 2022. The potential of transforming rice straw (Oryza sativa) and golden shower (Cassia fistula) seed waste into high-efficiency biochar by atmospheric pressure microwave plasma. Industrial Crops and Products, 185, p.115122
  13. Dwiyaniti, M., Barruna, A.E., Naufal, R.M., Subiyanto, I., Setiabudy, R. and Hudaya, C., 2020. Extremely high surface area of activated carbon originated from sugarcane bagasse. IOP Conference Series: Materials Science and Engineering, IOP Publishing
  14. Heniegal, A.M., Ramadan, M.A., Naguib, A. and Agwa, I.S., 2020. Study on properties of clay brick incorporating sludge from water treatment plants and agricultural waste. Case Studies in Construction Materials, 13, p.e00397
  15. Homagai, P.L., Ghimire, K.N. and Inoue, K., 2010. Adsorption behavior of heavy metals onto chemically modified sugarcane bagasse. Bioresource Technology, 101(6), pp.2067–2069
  16. Hossain, M.A., Ngo, H.H., Guo, W.S. and Nguyen, T.V., 2012. Removal of copper from water by adsorption onto banana peel as bioadsorbent. International Journal of GEOMATE, 2, pp.227–234
  17. Hrabovsky, M. and van der Walt, I.J., 2018. Plasma waste destruction. Handbook of Thermal Science and Engineering
  18. Jonglertjunya, W., Juntong, T., Pakkang, N., Srimarut, N. and Sakdaronnarong, C., 2014. Properties of lignin extracted from sugarcane bagasse and its efficacy in maintaining postharvest quality of limes during storage. LWT-Food Science and Technology, 57(1), pp.116–125
  19. Kalpana, M. and Nagalakshmi, R., 2023. Effect of reaction temperature and pH on structural and morphological properties of hydroxyapatite from precipitation method. Journal of the Indian Chemical Society, 100(4), p.100947
  20. Kang, H., Choi, S., Lee, J.H., Kim, K.T., Song, Y.H. and Lee, D.H., 2020. Plasma jet assisted carbonization and activation of coffee ground waste. Environment International, 145
  21. Khairiah, K., Frida, E., Sebayang, K., Sinuhaji, P. and Humaidi, S., 2021. Data on characterization, model, and adsorption rate of banana peel-activated carbon (Musa Acuminata) for adsorbents of various heavy metals (Mn, Pb, Zn, Fe). Data Brief, 39, p.107611
  22. Kominfo Jatim, 2022. Pertahankan predikat barometer nasional, produksi gula dan tebu Jatim sumbang 49,55 % nasional. Kominfojatim.go.id
  23. Kurniati, M., Nurhayati, D. and Maddu, A., 2017. Study of structural and electrical conductivity of sugarcane bagasse-carbon with hydrothermal carbonization. IOP Conference Series: Earth and Environmental Science, Institute of Physics Publishing
  24. Leng, L., Xiong, Q., Yang, L., Li, H., Zhou, Y., Zhang, W., Jiang, S., Li, H. and Huang, H., 2021. An overview on engineering the surface area and porosity of biochar. Science of The Total Environment, 763, p.144204
  25. Machado, A.A. and Mulky, L., 2023. A comparative study of treatment methods of raw sugarcane bagasse for adsorption of oil and diesel. Water Air Soil Pollution, 234, p.213
  26. Martins Torres, S., Estolano de Lima, V., De Azevedo Basto, P., De Araujo Junior, N.T. and De Melo Neto, A.A., 2020. Assessing the pozzolanic activity of sugarcane bagasse ash using X-ray diffraction. Construction and Building Materials, 264
  27. Qureashi, A., Pandith, A.H., Bashir, A., Malik, L.A., Manzoor, T., Sheikh, F.A., Fatima, K. and Haq, Z., 2023. Electrochemical analysis of glyphosate using porous biochar surface corrosive nZVI nanoparticles. Nanoscale Advances, 5(3), pp.742–755
  28. Raj, R. and Tirkey, J.V., 2023. Techno-economic assessment of sugarcane bagasse pith-based briquette production and performance analysis of briquette feed gasifier-engine system. Journal of Environmental Management, 345, p.118828
  29. Raut, N.A., Kokare, D.M., Randive, K.R., Bhanvase, B.A. and Dhoble, S.J., 2023. Introduction: Fundamentals of waste removal technologies. 360-Degree Waste Management, Volume 1, pp.1–16
  30. Sanito, R.C., You, S.J., Chang, G.M. and Wang, Y.F., 2020. Effect of shell powder on the removal of metals and volatile organic compounds (VOCs) from resin in an atmospheric pressure microwave plasma reactor. Journal of Hazardous Materials, 394, p.122558
  31. Sarbon, N.M., Sandanamsamy, S., Kamaruzaman, S.F.S. and Ahmad, F., 2014. Chitosan extracted from mud crab (Scylla olivicea) shells: Physicochemical and antioxidant properties. Journal of Food Science and Technology, 52(7), pp.4266–4275
  32. Satyam, S. and Patra, S., 2024. Innovations and challenges in adsorption-based wastewater remediation: A comprehensive review. Heliyon, 10(9), p.e29573
  33. Scheufele, F.B., Ribeiro, C., Módenes, A.N., Rodolfo, F., Quinones, E., Bergamasco, R. and Pereira, N.C., 2015. Assessment of drying temperature of sugarcane bagasse on sorption of Reactive HAp 5g dye. Fibers and Polymers, 16(8), pp.1646–1656
  34. Schott, J.A., Do-Thanh, C.L., Shan, W., Puskar, N.G., Dai, S. and Mahurin, S.M., 2021. FTIR investigation of the interfacial properties and mechanisms of CO2 sorption in porous ionic liquids. Green Chemical Engineering, 2(4), pp.392–401
  35. Setiawan, A., Dianti, L.R., Mayangsari, N.E., Widiana, D.R. and Dermawan, D., 2023. Removal of methylene blue using heterogeneous Fenton process with Fe-impregnated Kepok banana (Musa Acuminate L.) peel activated carbon as a catalyst. Inorganic Chemistry Communications, 152
  36. Shyam, S., Ahmed, S., Joshi, S.J. and Sarma, H., 2025. Biochar as a soil amendment: Implications for soil health, carbon sequestration, and climate resilience. Discovery Soil, 2, p.18
  37. Somyanonthanakun, W., Ahmed, R., Krongtong, V. and Thongmee, S., 2023. Studies on the adsorption of Pb(II) from aqueous solutions using sugarcane bagasse-based modified activated carbon with nitric acid: Kinetic, isotherm, and desorption. Chemical Physics Impact, 6, p.100181
  38. Taufani, M.R.I., 2023. Bensin bioethanol takkan ganggu gula konsumsi? Cek datanya. CNBC Indonesia
  39. Torres, S.M., Estolano de Lima, V., de Azevedo Basto, P., de Araújo Júnior, N.T. and de Melo Neto, A.A., 2020. Assessing the pozzolanic activity of sugarcane bagasse ash using X-ray diffraction. Construction and Building Materials, 264
  40. Wang, S., Zhao, M., Zhou, M., Li, Y.C., Wang, J., Gao, B., Sato, S., Feng, K., Yin, W., Igalavithana, A.D., Oleszczuk, P., Wang, X. and Ok, Y.S., 2019. Biochar-supported nZVI (nZVI/BC) for contaminant removal from soil and water: A critical review. Journal of Hazardous Materials, 373, pp.820–834
  41. Xue, Y., Kamali, M., Liyakat, A., Bruggeman, M., Muhammad, Z., Rossi, B., Costa, M.E.V., Appels, L. and Dewil, R., 2023. A walnut shell biochar-nano zero-valent iron composite membrane for the degradation of carbamazepine via persulfate activation. Science of the Total Environment, 899
  42. Yargiç, A.S., Yarbay Sahin, R.Z., Ozbay, N. and Onal, E., 2015. Assessment of toxic copper(II) biosorption from aqueous solution by chemically-treated tomato waste. Journal of Cleaner Production, 88, pp.152–159
  43. Yhon, J., Mendoza, J., Osorio, E. and Domínguez, M.P., 2023. Continuous removal of dyes from wastewater using banana-peel bioadsorbent: A low-cost alternative for wastewater treatment. Sustainability, 15(13), p.9870
  44. Yoo, S., Kelley, S.S., Tilotta, D.C. and Park, S., 2018. Structural characterization of loblolly pine derived biochar by X-ray diffraction and electron energy loss spectroscopy. ACS Sustainable Chemistry and Engineering, 6(2), pp.2621–2629
  45. Zafeer, M.K., Menezes, R.A., Venkatachalam, H. and Subrahmanya Bhat, K., 2024. Sugarcane bagasse-based biochar and its potential applications: A review. Emergent Materials, 7, pp.133–161
  46. Zhang, X.F. and Zhang, Z. (eds), 2001. Progress in transmission electron microscopy 1: Concepts and techniques; 2: Applications in materials science. Springer, Berlin

Last update:

No citation recorded.

Last update: 2025-08-01 08:41:36

No citation recorded.