skip to main content

Sustainable Strategies to Reduce Water Pollution from Domestic Wastewater Discharge

*Ridwan Ridwan orcid scopus  -  Universitas Bosowa, Indonesia
M Tang  -  Universitas Bosowa, Indonesia
Syafri Syafri  -  Universitas Bosowa, Indonesia
Aslam Jumain  -  Universitas Bosowa, Indonesia
Djusdil Akrim  -  Universitas Bosowa, Indonesia
Muh. Fikruddin Buraerah  -  Universitas Bosowa, Indonesia
Marini Ambo Wellang  -  The University of Kitakyushu, Japan

Citation Format:
Abstract

Urban rivers are increasingly threatened by pollution from domestic and industrial waste, leading to water quality degradation. The Pampang River in Makassar, an essential water source for residential, agricultural, and industrial use, faces growing pressure from untreated wastewater discharge. This study evaluates the current water quality status of the Pampang River by analyzing BOD, COD, pH, and temperature, and projects future pollution trends using predictive modeling. Water samples were collected from six strategic locations along the river to represent various pollution sources. BOD and COD were analyzed according to SNI 6989.72:2009 and SNI 6989.02:2019, while pH and temperature were measured in situ. A time series regression model predicted pollution levels over the next five years. Results indicate BOD (4.426–6.439 mg/L) and COD (34.1594–43.4827 mg/L) remain within regulatory standards but show an upward trend, potentially exceeding acceptable limits in 3–4 years. pH (7.39–8.08) and temperature (31.9°C–34.4°C) reflect the impact of detergents and urban runoff, threatening biodiversity and oxygen levels. Without intervention, the river's pollution will escalate, posing ecological and health risks. Sustainable strategies, including better wastewater treatment, stricter industrial regulations, and community-based waste management, are essential for long-term water quality sustainability.

Fulltext View|Download
Keywords: BOD; COD; domestic wastewater; sustainable water management; urban rivers; water pollution

Article Metrics:

  1. Akhtar, N., Syakir Ishak, M. I., Bhawani, S. A. & Umar, K., 2021. Various natural and anthropogenic factors responsible for water quality degradation: A review. Water, 13(19), pp. 2660
  2. Ali, S., Amir, S., Ali, S., Rehman, M. U., Majid, S. & Yatoo, A. M., 2021. Water pollution: Diseases and health impacts. In Freshwater Pollution and Aquatic Ecosystems, pp. 1-23. Apple Academic Press
  3. Andama, E., Turyahabwe, R., Masaba, S. & Makoba, P. G., 2022. Impact of commercial car washing bay on water quality of river Nakiyanja in Central Uganda. Journal of Applied Sciences and Environmental Management, 26(6), pp. 1173-1177
  4. Anh, N. T., Nhan, N. T., Schmalz, B. & Le Luu, T., 2023. Influences of key factors on river water quality in urban and rural areas: A review. Case Studies in Chemical and Environmental Engineering, 100424
  5. Anifowoshe, A. T., Roy, D., Dutta, S. & Nongthomba, U., 2022. Evaluation of cytogenotoxic potential and embryotoxicity of KRS-Cauvery River water in zebrafish (Danio rerio). Ecotoxicology and Environmental Safety, 233, p. 113320
  6. Achmad, C. A., Lestari, Y. D. & Purnomo, E., 2024. Effectiveness of Hydrilla verticillata (LF) Royle as a phytoremediation agent in Kaligarang River raw water. Journal of Natural Sciences and Mathematics Research, 10(1), pp. 106-113
  7. Bezsenyi, A., Sági, G., Makó, M., Wojnárovits, L. & Takács, E., 2021. The effect of hydrogen peroxide on the biochemical oxygen demand (BOD) values measured during ionizing radiation treatment of wastewater. Radiation Physics and Chemistry, 189, p. 109773
  8. Boyd, C. E. & Boyd, C. E., 2020. Dissolved oxygen and other gases. In Water quality: an introduction, pp. 135-162
  9. Braz-Mota, S. & Almeida-Val, V. M., 2021. Ecological adaptations of Amazonian fishes acquired during evolution under environmental variations in dissolved oxygen: A review of responses to hypoxia in fishes, featuring the hypoxia tolerant Astronotus spp. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 335(9-10), pp. 771-786
  10. Chakraborty, B., Bera, B., Adhikary, P. P., Bhattacharjee, S., Roy, S., Saha, S. et al., 2021. Positive effects of COVID-19 lockdown on river water quality: evidence from River Damodar, India. Scientific Reports, 11(1), p. 20140
  11. Chakraborty, S. K. & Chakraborty, S. K., 2021. River pollution and perturbation: Perspectives and processes. In Riverine Ecology Volume 2: Biodiversity Conservation, Conflicts and Resolution, pp. 443-530
  12. Choi, J. H., Kim, J. G., Kim, H. B., Shin, D. H. & Baek, K., 2021. Dual radicals-enhanced wet chemical oxidation of non-biodegradable chemicals. Journal of Hazardous Materials, 401, p. 123746
  13. Contieri, B. B., Rosa, J., Scoarize, M. M. R., Urbano, V. D. A. & Benedito, E., 2024. Anthropogenic land uses lead to changes in limnological variables in Neotropical streams. Environmental Monitoring and Assessment, 196(8), p. 702
  14. Custodio, M., Peñaloza, R., Chanamé, F., Hinostroza-Martínez, J. L. & De la Cruz, H., 2021. Water quality dynamics of the Cunas River in rural and urban areas in the central region of Peru. The Egyptian Journal of Aquatic Research, 47(3), pp. 253-259
  15. Da, S. & Wang, J., 2024. Occurrence, bioaccumulation, and risk assessment of organophosphate esters in rivers receiving different effluents. Toxics, 12(8), p. 612
  16. DjoharamV., RianiE. & YaniM., 2018. Analisis kualitas air dan daya tampung beban pencemaran Sungai Pesanggrahan di wilayah Provinsi DKI Jakarta. Jurnal Pengelolaan Sumberdaya Alam Dan Lingkungan, 8(1), pp. 127-133. Available at: https://doi.org/10.29244/jpsl.8.1.127-133
  17. Fan, Y., Chen, K., Dai, Z., Peng, J., Wang, F., Liu, H. et al., 2024. Land use/cover drive functional patterns of bacterial communities in sediments of a subtropical river, China. Science of The Total Environment, 947, p. 174564
  18. Ghahrchi, M., Bazrafshan, E., Badan, B., Shahamat, Y. & Gohari, F., 2020. Application of heterogeneous catalytic ozonation process for treatment of high toxic effluent from a pesticide manufacturing plant. Environmental Health Engineering and Management, 7(2), pp. 79-88
  19. Giri, S., 2021. Water quality prospective in twenty first century: Status of water quality in major river basins, contemporary strategies and impediments: A review. Environmental Pollution, 271, p. 116332
  20. Hamzah, D. N., Talib, S. H. A., Abustan, M. S. & Hashim, S. I. N. S., 2024. The optimization of photosynthetic bacteria (PSB) for water quality improvement. IOP Conference Series: Earth and Environmental Science, 1347(1), p. 012015
  21. Hanif, M. A., Miah, R., Islam, M. A. & Marzia, S., 2020. Impact of Kapotaksha river water pollution on human health and environment. Progressive Agriculture, 31(1), pp. 1-9
  22. Hashim, N. H. F., Yusoff, M. A. M., Gunggang, R. A. T., Razak, R. A., Jaafar, M. Z. & Yahaya, N. K. E., 2024. Water quality and prevalence of extended spectrum beta lactamase producing Escherichia coli (ESBL E. coli) in Sungai Terengganu, Malaysia. Malaysian Applied Biology, 53(4), pp. 65-75
  23. Haq, I. & Kalamdhad, A. S., 2021. Phytotoxicity and cyto-genotoxicity evaluation of organic and inorganic pollutants containing petroleum refinery wastewater using plant bioassay. Environmental Technology & Innovation, 23, p. 101651
  24. Hua, A. K. & Gani, P., 2023. Temporal seasonal variations and source apportionment of water pollution in Melaka River Basin using multivariate statistical techniques. Polish Journal of Environmental Studies, 32(1)
  25. Hasan, H., Prasetio, E. & Muthia, S., 2016. Analisis kualitas perairan Sungai Ambawang di Kecamatan Sungai Ambawang, Kabupaten Kubu Raya untuk budidaya perikanan. Jurnal Ruaya: Jurnal Penelitian Dan Kajian Ilmu Perikanan Dan Kelautan
  26. Islam, M. M., Rahman, M., Nargis, S., Ahamed, M. R., Mollik, R. S., Boby, N. J. K. et al., 2023. Elevating health of the Turag River: A synergistic water quality assessment approach. Earth Systems and Environment, 7(4), pp. 761-780
  27. Joshi, P., Chauhan, A., Dua, P., Malik, S. & Liou, Y. A., 2022. Physicochemical and biological analysis of river Yamuna at Palla station from 2009 to 2019. Scientific Reports, 12(1), p. 2870
  28. Jóźwiakowski, K., Listosz, A., Micek, A., Marzec, M., Gizińska-Górna, M., Rybczyńska-Tkaczyk, K. et al., 2021. Assessment of the influence of anthropogenic pollution on water quality of the Ciemięga River. Journal of Ecological Engineering, 22(5)
  29. Juwana, I., Maria, R., Marganingrum, D., Nurjayati, R., Santoso, H., Nurohman, H. & Prasetio, R., 2023. Assessment of water quality changes using physical parameters and stable isotope in Ciliwung River. IOP Conference Series: Earth and Environmental Science, 1275(1), p. 012051
  30. Kemba, H., Tshifhiwa, N. & Vusumuzi, N., 2019. Knowledge, attitudes, and practices of tertiary education students in regard to air pollution in Windhoek, Namibia: A cross-sectional study
  31. Khan, R., Saxena, A., Shukla, S., Sekar, S. & Goel, P., 2021. Effect of COVID-19 lockdown on the water quality index of River Gomti, India, with potential hazard of faecal-oral transmission. Environmental Science and Pollution Research, 28(25), pp. 33021-33029
  32. Kherazi, F. Z., Sun, D., Sohu, J. M., Junejo, I., Naveed, H. M., Khan, A. & Shaikh, S. N., 2024. The role of environmental knowledge, policies and regulations toward water resource management: A mediated moderation of attitudes, perception, and sustainable consumption patterns. Sustainable Development
  33. Kruszelnicka, I., Ginter-Kramarczyk, D., Wyrwas, B. & Idkowiak, J., 2019. Evaluation of surfactant removal efficiency in selected domestic wastewater treatment plants in Poland. Journal of Environmental Health Science and Engineering, 17, pp. 1257-1264
  34. Kumar, R., Goyal, M. K., Surampalli, R. Y. & Zhang, T. C., 2024. River pollution in India: Exploring regulatory and remedial paths. Clean Technologies and Environmental Policy, pp. 1-23
  35. Lacalamita, D., Mongioví, C. & Crini, G., 2024. Chemical oxygen demand and biochemical oxygen demand analysis of discharge waters from laundry industry: Monitoring, temporal variability, and biodegradability. Frontiers in Environmental Science, 12, p. 1387041
  36. Lin, L., Yang, H. & Xu, X., 2022. Effects of water pollution on human health and disease heterogeneity: A review. Frontiers in Environmental Science, 10, p. 880246
  37. Liu, L., Wang, S. & Chen, J., 2021. Anthropogenic activities change the relationship between microbial community taxonomic composition and functional attributes. Environmental Microbiology, 23(11), pp. 6663-6675
  38. Maddah, H. A., 2022. Predicting optimum dilution factors for BOD sampling and desired dissolved oxygen for controlling organic contamination in various wastewaters. International Journal of Chemical Engineering, 2022(1), p. 8637064
  39. Mangkoedihardjo, S., 2023. Insights on sequential changes to the ratios of Biochemical Oxygen Demand and Chemical Oxygen Demand. Journal of Sustainable Development of Energy, Water and Environment Systems, 11(2), pp. 1-20
  40. Makwana, S., 2020. Effect of textile industrial effluents on water quality of Bandi River (Pali) Rajasthan, India. International Journal for Research in Applied Science & Engineering Technology, 8(4), pp. 21-28
  41. Menteri Negara Lingkungan Hidup Republik Indonesia, 2003. Keputusan Menteri Negara Lingkungan Hidup Republik Indonesia Nomor: 115 Tahun 2003 tentang Pedoman Penentuan Status Mutu Air. Sekretariat Negara Republik Indonesia
  42. Miah, M. H., Chand, D. S. & Malhi, G. S., 2023. Selected river pollution in Bangladesh based on industrial growth and economic perspective: A review. Environmental Monitoring and Assessment, 195(1), p. 98
  43. Mohanty, A., Mohanty, S. K. & Mohapatra, A. G., 2024. Real-time monitoring and fault detection in AI-enhanced wastewater treatment systems. In The AI Cleanse: Transforming Wastewater Treatment Through Artificial Intelligence: Harnessing Data-Driven Solutions, pp. 165-199. Cham: Springer Nature Switzerland
  44. Molloy, S., Medeiros, A. S., Walker, T. R. & Saunders, S. J., 2022. Public perceptions of legislative action to reduce plastic pollution: A case study of Atlantic Canada. Sustainability, 14(3), p. 1852
  45. Noureen, A., Aziz, R., Ismail, A. & Trzcinski, A. P., 2022. The impact of climate change on waterborne diseases in Pakistan. Sustainability and Climate Change, 15(2), pp. 138-152
  46. Oladeji, S. O., 2020. Evaluation of physicochemical parameters in wastewater from Muhammad Ayuba dam in Kazaure, Jigawa state, Nigeria. Archives of Agriculture and Environmental Science, 5(4), pp. 482-488
  47. Pemerintah Republik Indonesia, 2001. Peraturan Pemerintah Republik Indonesia No. 82 Tahun 2001 tentang Pengelolaan Kualitas Air dan Pengendalian Pencemaran Air. Sekretariat Negara Republik Indonesia
  48. Pinheiro, J. P. S., Windsor, F. M., Wilson, R. W. & Tyler, C. R., 2021. Global variation in freshwater physico‐chemistry and its influence on chemical toxicity in aquatic wildlife. Biological Reviews, 96(4), pp. 1528-1546
  49. Purba, I. R., 2022. Makrozoobentos Sebagai Bioindikator Kualitas Air. Cv. Azka Pustaka
  50. Prayoga, G., Zainalarifin, J., Mufawwaz, T. A., Firmansyah, F. S., Rizal, H., Effendi, H. et al., 2023. Spatio-temporal analysis of river water pollution levels in the Angke-Pesanggrahan watershed. In IOP Conference Series: Earth and Environmental Science, 1266(1), p. 012049
  51. Prokkola, H., Heponiemi, A., Pesonen, J., Kuokkanen, T. & Lassi, U., 2022. Reliability of biodegradation measurements for inhibitive industrial wastewaters. ChemEngineering, 6(1), p. 15
  52. Rifai, R. M., Lahardo, D. R., Fahmi, A. F. R. & Siswahyudi, D., 2023. Investigating the availability of domestic wastewater pollution load capacity in Brantas River, Malang. In E3S Web of Conferences, 445, p. 01019. EDP Sciences
  53. Setyawan, A., Muhammad, F. & Hermawan, F., 2024. Analysis of the Water Quality Index (WQI) of the Kupang River to achieve Sustainable Development Goals (SDGs). In IOP Conference Series: Earth and Environmental Science, 1414(1), p. 012004
  54. Rajagukguk, J. R. & Pranoto, D. A., 2023. Research on the impact of Ciliwung River water on the surrounding environment in the DKI Jakarta area. In IOP Conference Series: Earth and Environmental Science, 1175(1), p. 012013
  55. Rashid, H., Manzoor, M. M. & Mukhtar, S., 2018. Urbanization and its effects on water resources: An exploratory analysis. Asian Journal of Water, Environment and Pollution, 15(1), pp. 67-74
  56. Ratnaningsih, D., Nasution, E. L., Wardhani, N. T., Pitalokasari, O. D. & Fauzi, R., 2019. Water pollution trends in Ciliwung River based on water quality parameters. In IOP Conference Series: Earth and Environmental Science, 407(1), p. 012006
  57. Setyono, P., Sunarhadi, R. M. A., Putri, D. S., Fauziah, I., Andrianto, R., Sari, Y. D. & Firdausi, E., 2024. Analysis of cadmium (Cd) and iron (Fe) heavy metal content in the river around Putri Cempo landfill, Surakarta. In IOP Conference Series: Earth and Environmental Science, 1414(1), p. 012006. IOP Publishing
  58. Sun, Q., Chang, S., Wang, J., Chen, J. A., Qin, C., Shi, W. et al., 2024. Assessing the impact of rainfall on water quality in a coastal urban river utilizing the environmental fluid dynamics code. Urban Climate, 56, p. 102082
  59. Shil, S., Singh, U. K. & Mehta, P., 2019. Water quality assessment of a tropical river using water quality index (WQI), multivariate statistical techniques and GIS. Applied Water Science, 9, pp. 1-21
  60. Shrestha, A. K., Rai, M., Pokhrel, J., Karki, S., Poudel, D., Karki, S. et al., 2023. A preliminary assessment of spatial variation of water quality of Ratuwa river. PLOS ONE, 18(5), p. e0285164
  61. Singer, A. C., Xu, Q. & Keller, V. D., 2019. Translating antibiotic prescribing into antibiotic resistance in the environment: A hazard characterisation case study. PLOS ONE, 14(9), p. e0221568
  62. Singh, P. K., Kumar, U., Kumar, I., Dwivedi, A., Singh, P., Mishra, S. et al., 2024. Critical review on toxic contaminants in surface water ecosystem: Sources, monitoring, and its impact on human health. Environmental Science and Pollution Research, 31(45), pp. 56428-56462
  63. Surya, B., Syafri, S., Sahban, H. & Sakti, H. H., 2020. Natural resource conservation based on community economic empowerment: Perspectives on watershed management and slum settlements in Makassar City, South Sulawesi, Indonesia. Land, 9(4), p. 104. Available at: https://doi.org/10.3390/land9040104
  64. Syafri, S., Surya, B., Ridwan, R., Bahri, S., Rasyidi, E. S. & Sudarman, S., 2020. Water quality pollution control and watershed management based on community participation in Maros City, South Sulawesi, Indonesia. Sustainability, 12(24), p. 10260
  65. Syerin, L. A., Aphirta, S. & Astono, W., 2023. Performance of trembesi seed (Samanea saman) on tempeh wastewater treatment (a case study in Semanan Tempeh Industry), West Jakarta. In IOP Conference Series: Earth and Environmental Science, 1263(1), p. 012060. IOP Publishing
  66. Tian, G., Zhu, G., Xu, S. & Ren, T., 2019. An investigation on sunlight-induced shape memory behaviors of PCL/TIN composites film. Smart Materials and Structures, 28(10), p. 105006
  67. Tyagi, S. & Sarma, K., 2021. Seasonal variability, index modeling and spatiotemporal profiling of groundwater usability in semi-urban region of western Uttar Pradesh, India. Environmental Earth Sciences, 80, pp. 1-30
  68. Tyassari, D. V., Soenarno, S. M. & Kristiyanto, K., 2024. Analisis kualitas air Sungai Ciliwung di wilayah Jakarta Timur. EduBiologia: Biological Science and Education Journal, 4(1)
  69. Vigiak, O., Grizzetti, B., Udias-Moinelo, A., Zanni, M., Dorati, C., Bouraoui, F. & Pistocchi, A., 2019. Predicting biochemical oxygen demand in European freshwater bodies. Science of the Total Environment, 666, pp. 1089-1105
  70. Vohsen, S. A. & Herrera, S., 2024. Coral microbiomes are structured by environmental gradients in deep waters. Environmental Microbiome, 19(1)
  71. Wulandari, M., Harfadli, M. M. A. & Rahmania, R., 2020. Penentuan kondisi kualitas perairan Muara Sungai Somber, Balikpapan, Kalimantan Timur dengan metode Indeks Pencemaran (Pollution Index). SPECTA Journal of Technology, 4(2), pp. 23-34
  72. Wulansarie, R., Fardhyanti, D. S., Ardhiansyah, H., Nuroddin, H., Salsabila, C. A. & Alifiananda, T., 2024. Combination of adsorption using activated carbon and advanced oxidation processes (AOPs) using O3/H2O2 in decreasing BOD of tofu liquid waste. In IOP Conference Series: Earth and Environmental Science, 1381(1), p. 012041. IOP Publishing
  73. Xu, H., Gao, Q. & Yuan, B., 2022. Analysis and identification of pollution sources of comprehensive river water quality: Evidence from two river basins in China. Ecological Indicators, 135, p. 108561
  74. Xu, J., Jin, G., Mo, Y., Tang, H. & Li, L., 2020. Assessing anthropogenic impacts on chemical and biochemical oxygen demand in different spatial scales with Bayesian networks. Water, 12(1), p. 246
  75. Yeboah, S. I. I. K., Antwi-Agyei, P., Kabo-Bah, A. T. & Ackerson, N. O. B., 2024. Water, environment, and health nexus: Understanding the risk factors for waterborne diseases in communities along the Tano River Basin, Ghana. Journal of Water and Health, 22(8), pp. 1556-1577
  76. Yu, X., Shen, J. & Du, J., 2020. A machine-learning-based model for water quality in coastal waters, taking dissolved oxygen and hypoxia in Chesapeake Bay as an example. Water Resources Research, 56(9), p. e2020WR027227
  77. Zaman, B., Hardyanti, N., Pramesti, I. A. & William, G. S., 2024. The effect of Fenton oxidation on the quality of pharmaceutical industry wastewater: A case study of BOD, COD, TOC, and turbidity parameters. In IOP Conference Series: Earth and Environmental Science, 1414(1), p. 012036. IOP Publishing
  78. Zeng, J., Han, G., Zhang, S., Xiao, X., Li, Y., Gao, X. et al., 2022. Rainwater chemical evolution driven by extreme rainfall in megacity: Implication for the urban air pollution source identification. Journal of Cleaner Production, 372, p. 133732
  79. Zhang, J., Gao, Y., Yang, N., Dai, E., Yang, M., Wang, Z. & Geng, Y., 2021. Ecological risk and source analysis of soil heavy metals pollution in the river irrigation area from Baoji, China. PLOS ONE, 16(8), p. e0253294
  80. Zhao, W., Li, P. & Yang, B., 2024. New insight into the spatiotemporal distribution and ecological risk assessment of endocrine-disrupting chemicals in the Minjiang and Tuojiang rivers: Perspective of watershed landscape patterns. Environmental Science: Processes & Impacts, 26(8), pp. 1360-1372
  81. Zulfikar, Z., Nasrullah, N., Kartini, K. & Aditama, W., 2022. Effect of hydraulic retention time on the levels of biochemical oxygen demand and total suspended solid with simple integrated treatment as an alternative to meet the household needs for clean water. Open Access Macedonian Journal of Medical Sciences, 10(E), pp. 6-11

Last update:

No citation recorded.

Last update: 2025-11-28 15:27:51

No citation recorded.