skip to main content

Utilization of Pyrolysed Tyres Scrap as Heavy Metal Adsorbent

*Surya Surya orcid  -  Institut Teknologi Sepuluh Nopember, Indonesia
Yulinah Trihadiningrum  -  Institut Teknologi Sepuluh Nopember, Indonesia
Ainul Firdatun Nisaa  -  The University of Edinburgh, United Kingdom

Citation Format:
Abstract

Scrap tires continuously generated due to increasing motorized vehicle use. In Indonesia, tire waste generation reaches approximately 11 million tons annually. One processing method is pyrolysis, which converts tires into carbon, oil, and metals. However, the carbon, comprising 25–30% of tire conten, remains underutilized. This study aims to compare the performance of Tire-derived Activated Carbon (TAC) and Commercial Activated Carbon (CAC) in Pb(II) removal from wastewater. The carbon was activated using 98% H₂SO₄ (1:1 w/w) and heated in a fluidized bed reactor at 600, 650, and 700 °C for 1 hour. The optimal TAC was produced at 600 °C, with a specific surface area of 103.162 m²/g. FTIR analysis confirmed the presence of -OH, C=C, and C=O functional groups, and SEM revealed a porous structure. Adsorption tests at varying pH and initial Pb(II) concentrations showed optimum performance at pH 5 and 30 mg/L. The Langmuir model fitted the data well, indicating monolayer adsorption on a homogeneous surface. TAC achieved 96.32% removal efficiency in synthetis medium and a maximum adsorption capacity of 240.80 mg/g, significantly higher than CAC (62.68%, 151.366 mg/g). These results demonstrate the potential of TAC as an effective low-cost alternative adsorbent for heavy metal removal. 

Fulltext View|Download
Keywords: Activated carbon; adsorption; pyrolisis; scrap tire; sulfuric acid

Article Metrics:

  1. Acosta, R, Fierro, V, Yuso, A, M, D, Nabarlatz, D, and Celzard, A. 2016. Tetracycline adsorption onto activated carbons produced by KOH activation of the tyre pyrolysis char. Chemosphere 149, 168–176
  2. Ahmad, Z, Gao, B, Mosa, A, Yu, H, Yin, X, Bashir, A, Ghoveisi, H, and Wang, S. 2018. Removal of Cu(II), Cd(II) and Pb(II) ions from aqueous solutions by biochars derived from potassium-rich biomass. Journal of Cleaner Production 180, 437–449
  3. Al-Ghouti, M, A, and Da’ana, D, A. 2020. Guidelines for the use and interpretation of adsorption isotherm models: A review. Journal of Hazardous Materials 393, 122383
  4. Al-Saadi, A, A, Saleh, T, A, and Gupta, V, K. 2013. Spectroscopic and computational evaluation of cadmium adsorption using activated carbon produced from rubber tires. Journal of Molecular Liquids 188, 136–142
  5. Amirudin, M, Novita, E, and Tasliman. 2020. Analisis variasi konsentrasi asam sulfat sebagai aktivasi arang aktif berbahan batang tembakau (Nicotiana tabacum). Agroteknika 3(2), 99–108
  6. Anirudhan, T, and Sreekumari, S. 2011. Adsorptive removal of heavy metal ions from industrial effluents using activated carbon derived from waste coconut buttons. Journal of Environmental Sciences 23, 1989–1998
  7. Annisa, R, W, R, Hasri, and Pratiwi, D, E. 2024. Adsorpsi logam Pb(II) menggunakan adsorben rumput gajah teraktivasi. Jurnal Kimia (Journal of Chemistry) 18(1), January
  8. Babel, S, and Kurniawan, T, A. 2003. Low-cost adsorbents for heavy metals uptake from contaminated water: A review. Journal of Hazardous Materials 97(1–3), 219–243
  9. Baunsele, A, B, and Missa, H. 2020. Kajian kinetika adsorpsi metilen biru menggunakan adsorben sabut kelapa. Akta Kimindo 5(2), 76–78
  10. Botahala, L. 2022. Adsorpsi arang aktif. Cetakan pertama. Yogyakarta: Deepublish
  11. BPS (Badan Pusat Statistik). 2024. Jumlah penduduk pertengahan tahun (ribu jiwa), 2022–2024
  12. Charerntanyarak, L. 1999. Heavy metals removal by chemical coagulation and precipitation. Water Science and Technology. Elsevier
  13. Diez, C, Martinez, O, Calvo, L, F, Cara, J, and Moran, A. 2004. Pyrolysis of tyres: Influence of the final temperature of the process on emissions and the calorific value of the products recovered. Waste Management 24, 463–469
  14. Dimpe, K, M, Ngila, J, C, and Nomngongo, P, N. 2017. Application of waste tyre-based activated carbon for the removal of heavy metals in wastewater. Cogent Engineering 4, 1330912
  15. Doja, S, Pillari, L, K, and Bichler, L. 2022. Processing and activation of tire-derived char: A review. Renewable and Sustainable Energy Reviews 155, 111860
  16. El-Maadawy, M, M, Elzoghby, A, A, Masoud, A, M, El-Deeb, Z, M, El-Naggar, A, M, A, and Taha, M, H. 2024. Conversion of carbon black recovered from waste tires into activated carbon via chemical/microwave methods for efficient removal of heavy metal ions from wastewater. RSC Advances 14, 6324–6336
  17. El-Sayed, G, O. 2011. Removal of methylene blue and crystal violet from aqueous solutions by palm kernel fiber. Desalination 272(1–3), 225–232
  18. Elnabi, M, K, A, Elkaliny, N, E, Elyazid, M, M, Azab, S, H, Elkhalifa, S, A, Elmasry, S, Mouhamed, M, S, Shalamesh, E, M, and Alhorieny, N, A. 2023. Toxicity of heavy metals and recent advances in their removal: A review. Toxics 11, 580
  19. Elijah, P, Ugwoha, E, and Amah, V. 2024. Preparation and characterization of activated carbon from melon seed husk. Journal of Environmental Chemical Engineering 12(3), 100219
  20. Evans, R, and Evans, A. 2006. The composition of a tyre: Typical components. The Waste & Resources Action Programme
  21. Fiqriawan, M, R, Anas, M, and Erniwati. 2023. Efek variasi H₃PO₄ terhadap kualitas karbon aktif cangkang kemiri berdasarkan analisis proksimat. Research Journal of Applied Physics 1, 42–47
  22. Foo, K, Y, and Hameed, B, H. 2010. Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal 156(1), 2–10
  23. Fung, P, P, M, Cheung, W, H, and McKay, G. 2012. Systematic analysis of carbon dioxide activation of waste tire by factorial design. Chinese Journal of Chemical Engineering 20, 497–504
  24. Galvagno, S, Casu, S, Casablanca, T, Calabrese, A, and Cornacchia, G. 2002. Pyrolysis process for the treatment of scrap tyres: Preliminary experimental results. Waste Management 22, 917–923
  25. Gonzales-Gonzales, R, B, Gonzales, L, T, Iglesias-Gonzales, S, Gonzales-Gonzales, E, Martinez-Chapa, S, Madou, M, Alvarez, M, M, and Mendoza, A. 2020. Characterization of chemically activated pyrolitic carbon black derived from waste tires as a candidate for nanomaterial precursor. Nanomaterials 10, 2213
  26. Hasan, S, Aladin, A, Syarif, T, and Arman, M. 2020. Pengaruh penambahan gas nitrogen terhadap kualitas charcoal yang diproduksi secara pirolisis dari limbah biomassa serbuk gergaji kayu ulin (Euxideroxylon zwageri). Journal of Chemical Process Engineering 5(1)
  27. He, J, Li, Y, Wang, C, Zhang, K, Lin, D, Kong, L, and Liu, J. 2017. Rapid adsorption of Pb, Cu and Cd from aqueous solutions by β-cyclodextrin polymers. Applied Surface Science 426, 29–39
  28. Hofman, M, and Pietrzak, R. 2011. Adsorbents obtained from waste tires for NO₂ removal under dry conditions at room temperature. Chemical Engineering Journal 170, 202–208
  29. Ikawati, and Melati. 2009. Pembuatan karbon aktif dari limbah kulit singkong UKM tapioka Kabupaten Pati. In: Prosiding Seminar Nasional Teknik Kimia Indonesia (SNTKI): Peran Teknik Kimia dalam Menjamin Ketahanan Pangan dan Energi Nasional. Jakarta
  30. Ilmi, M, M. 2018. Studi adsorpsi zat warna auramin menggunakan ZSM-5 yang disintesis dari kaolin Bangka tanpa templat organik. Skripsi. Institut Teknologi Sepuluh Nopember
  31. Ioannidou, O, and Zabaniotou, A. 2007. Agricultural residues as precursors for activated carbon production—A review. Renewable and Sustainable Energy Reviews 11(9), 1966–2005
  32. Isahak, W, N, R, W, Hisham, M, W, and Yarmo, M, A. 2013. Highly porous carbon materials from biomass by chemical and carbonization method: A comparison study. Journal of Chemistry 2013, Article ID 620346
  33. Jagtoyen, M, and Derbyshire, F. 1998. Activated carbons from yellow poplar and white oak by H₃PO₄ activation. Carbon 36(7–8), 1085–1097
  34. Kayiwa, R, Kasedde, H, Lubwama, M, and Kirabira, J, B. 2021. Mesoporous activated carbon yielded from pre-leached cassava peels. Bioresources and Bioprocessing 8, 53
  35. Kolur, N, A, Sharifian, S, and Kaghazchi, T. 2019. Investigation of sulfuric acid treated activated carbon properties. Turkish Journal of Chemistry 43(2), 663–675
  36. Li, S-Q, Yao, Q, Chi, Y, Yan, J-H, and Cen, K-F. 2004. Pilot-scale pyrolysis of scrap tires in a continuous rotary kiln reactor. Industrial & Engineering Chemistry Research 43, 5133–5145
  37. Lindenmuth, B, E. 2006. An overview of tire technology. In: The Pneumatic Tire. 1–27
  38. Lopez, G, Alvarez, J, Mkhize, N, M, Danon, B, van der Gryp, P, Görgens, J, F, Bilbao, J, and Olazar, M. 2017. Waste truck-tyre processing by flash pyrolysis in a conical spouted bed reactor. Energy Conversion and Management 142, 523–532
  39. Low, Y, W, and Yee, K, F. 2021. A review on lignocellulosic biomass waste into biochar-derived catalyst: Current conversion techniques, sustainable applications and challenges. Biomass and Bioenergy 154, 106245
  40. Lozano-Castelló, D, Cazorla-Amorós, D, Linres-Solano, A, and Quinn, D, F. 2001. Influence of pore size distribution on methane storage at relatively low pressure: Preparation of activated carbon with optimum pore size. Carbon 40(7), 989–1002
  41. Lua, A, C, and Yang, T. 2004. Effects of activation temperature and holding time on the pore structure of activated carbon prepared from pistachio-nut shells. Journal of Colloid and Interface Science 274(2), 594–601
  42. Manchon-Vizuete, E, Macías-García, A, Nadal-Gisbert, A, Fernandez-Gonzalez, C, and Gomez-Serrano, V. 2005. Adsorption of mercury by carbonaceous adsorbents prepared from rubber of tyre wastes. Journal of Hazardous Materials 119, 231–238
  43. Martinez, J, D, Puy, N, Murillo, R, Garcia, T, Navarro, M, V, and Mastral, A, M. 2013. Waste tyre pyrolysis – a review. Renewable and Sustainable Energy Reviews 23, 179–213
  44. Mohan, D, and Pittman, C, U. 2006. Activated carbons and low-cost adsorbents for remediation of tri- and hexavalent chromium from water. Journal of Hazardous Materials 137(2), 762–811
  45. Mui, E, L, K, Cheung, W, H, Valix, M, and McKay, G. 2010. Activated carbons from waste tire rubber for CO₂ capture. Journal of Analytical and Applied Pyrolysis 89(1), 67–75
  46. Mustafa, D, and Noor, A, M. 2003. Pembuatan dan karakterisasi karbon aktif dari ban bekas dan penggunaannya untuk penyerapan ion-ion logam dalam larutan. Jurnal Kimia Andalas 9(2), 11–15
  47. Nastain, and Maryoto, A. 2010. Pemanfaatan pemotongan ban bekas untuk campuran beton beton serat perkerasan kaku. Dinamika Rekayasa 6(1), 14–18
  48. Nieto-Marquez, A, Pinedo-Flores, A, Picasso, G, Atanes, E, and Kou, R, S. 2017. Selective adsorption of Pb²⁺, Cr³⁺ and Cd²⁺ mixtures on activated carbons prepared from waste tires. Journal of Environmental Chemical Engineering 5, 1060–1067
  49. Ozbas, E, E, Balcik, B, and Ozcan, H, K. 2019. Preparation of activated carbon from waste tires, and its use for dye removal. Desalination and Water Treatment 172, 78–85
  50. Pasaribu, J, and Maulina, R. 2024. Pengaruh aktivator konsentrasi asam sulfat dan massa adsorben terhadap kapasitas adsorpsi karbon aktif. Chemical Engineering Journal Storage 4(4), 570–583
  51. Prasetyo, A, Yudi, A, and Astuti, R, N. 2011. Adsorpsi metilen blue pada karbon aktif dari ban bekas dengan variasi konsentrasi NaCl pada suhu pengaktifan 600°C dan 650°C. Jurnal Neutrino 4(1), Oktober
  52. Rahayu, E, Hasri, and Pratiwi, D, E. 2023. Studi adsorpsi logam Cd(II) dan Pb(II) menggunakan adsorben rumput gajah (Pennisetum purpureum). Analit: Analytical and Environmental Chemistry 8(1), April
  53. Sadaf, S, and Bhatti, H, N. 2014. Batch and fixed bed column studies for the removal of indosol yellow BG dye by peanut husk. Journal of the Taiwan Institute of Chemical Engineers 45(2), 541–553
  54. Saleh, T, A, and Gupta, V, K. 2014. Processing methods, characteristics and adsorption behavior of tire-derived carbons: A review. Advances in Colloid and Interface Science 211, 93–101
  55. Shahraki, R, S, Benally, C, and El-Din, M, G. 2021. High efficiency removal of heavy metals using tire-derived activated carbon vs commercial activated carbon: Insight into the adsorption mechanisms. Chemosphere 264, 128455
  56. Shulman, V, L. 2019. Tire recycling. In: Waste. Brussels: Elsevier Inc., 489–515
  57. Sirimuangjinda, A, Atong, D, and Pechyen, C. 2013. Comparison on pore development of activated carbon produced from scrap tire by hydrochloric acid and sulfuric acid. Advanced Materials Research 626, 706–710
  58. Slamet, Bismo, S, Arbianti, R, Sari, and Zulaina. 2006. Penyisihan fenol dengan kombinasi proses adsorpsi dan fotokatalisis menggunakan karbon aktif dan TiO₂. Jurnal Teknologi (4), 303–311
  59. Sudaryanto, Y, Hartono, S, B, Irawaty, W, Hindarso, H, and Ismadji, S. 2022. High surface area activated carbon prepared from cassava peel by chemical activation. Bioresource Technology 97(5), 734–739
  60. Sumiyanto, Apriyono, A, Mistiyani, T, A, and Pradana, R, N. 2022. Pengaruh pemasangan anyaman karet ban bekas pada tanah pasir dengan pembebanan berulang. Dinamika Rekayasa 18(1), 13–17
  61. Taki, E, A, and Salman, S, D. 2023. A review on activated carbon prepared from agricultural waste using conventional and microwave activation. Al-Khawarizmi Engineering Journal 19(3)
  62. Tofighy, M, A, and Mohammadi, T. 2011. Adsorption of divalent heavy metal ions from water using carbon nanotube sheets. Journal of Hazardous Materials 185, 140–147
  63. Villasenor, E, A, Ardila, A, N, Barrera, R, and Hernandez, J. 2023. Using banana waste biochar for simultaneous removal of heavy metals from raw real wastewater from electroplating industry. Desalination and Water Treatment 314, 88–102
  64. Wang, J, and Guo, X. 2020. Adsorption isotherm models: Classification, physical meaning, application and solving method. Chemosphere 258, 127279
  65. Weber, T, W, and Chakraborty, S. 2022. Comparative analysis of Langmuir and Freundlich isotherms in adsorption studies. Environmental Science and Pollution Research 29, 12345–12356
  66. Weber, W, J, and Morris, J, C. 1963. Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division 89(2), 31–60
  67. Xu, D, Tan, X, L, Chen, C, L, and Wang, X, K. 2008. Adsorption of Pb(II) from aqueous solution to MX-80 bentonite: Effect of pH, ionic strength, foreign ions and temperature. Applied Clay Science 41, 37–46
  68. Yahya, M, A, Al-Qodah, Z, and Ngah, C, W. 2015. Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review. Renewable and Sustainable Energy Reviews 46, 218–235

Last update:

No citation recorded.

Last update: 2025-11-28 15:27:31

No citation recorded.