skip to main content

Life Cycle Analysis of Coal and RDF Utilization as Energy Sources for Industry: A Comparative Study of Environmental Impacts

Dimastyaji Yusron Nurseta  -  Wageningen University Social Science School, Netherlands
Adora Salsa Bigita  -  Universitas Diponegoro, Indonesia
Alvina Damayanti  -  Universitas Diponegoro, Indonesia
*Aprianto Tyas Dwi Nugroho  -  Universitas Diponegoro, Indonesia
Aulia Mutiara Andini  -  Universitas Diponegoro, Indonesia
Bq. Nurul Maghfira Agni Firdausi  -  Universitas Diponegoro, Indonesia
Hessy Rahma Wati  -  Environmental Sustainability Research Group, Indonesia

Citation Format:
Abstract

This study utilized an LCA approach to comparatively analyze the environmental impact of using coal and RDF as industrial energy sources. Coal, which constitutes the foundation of Indonesia's economy and its primary energy source, has resulted in substantial emissions. In response to this challenge, RDF has emerged as a promising alternative fuel made from municipal waste with a calorific value equivalent to coal. The findings of this research consistently demonstrate that RDF exhibits a considerably diminished environmental impact profile in comparison to coal, across a wide range of evaluated impact categories. For instance, RDF contributes a mere 2% to terrestrial and freshwater aquatic ecotoxicity, whereas coal contributes 98%. RDF exhibits a minimal contribution to acidification potential, eutrophication, ozone depletion, and human toxicity. The novelty of this research lies in its in-depth comparative analysis of the environmental impacts of coal and RDF using LCA with gate-to-gate boundaries, as well as the identification of key impact points (hotspots) in each energy production process. These findings serve to reinforce the argument that RDF is a more sustainable and environmentally friendly energy option for Indonesia's industrial sector.

Fulltext View|Download
Keywords: Life cycle assessment; coal; refuse derived fuel; environmental impact; alternative energy

Article Metrics:

Article Info
Section: Original Research Article
Language : EN
  1. (IEA), I. E. A. 2022. Indonesia energy profile
  2. Al Qadar, S., Budihardjo, M. A., Priyambada, I. B. & Puspita, A. S. 2023. Review of household waste management technology for a greener solution to accomplish circular economy in salatiga, indonesia. Ecological Engineering & Environmental Technology, 24
  3. Anasstasia, T., Lestianingrum, E., Cahyono, R. & Azis, M. Life cycle assessment of refuse derived fuel (rdf) for municipal solid waste (msw) management: Case study area around cement industry, cirebon, indonesia. IOP Conference Series: Materials Science and Engineering, 2020. IOP Publishing, 012146
  4. Arba, Y. & Thamrin, S. 2022. Journal review: Perbandingan pemodelan perangkat lunak life cycle assessment (lca) untuk teknologi energi. Jurnal Energi Baru dan Terbarukan, 3, 142-153
  5. Arena, U. 2012. Process and technological aspects of municipal solid waste gasification. A review. Waste management, 32, 625-639
  6. Armoo, E. A., Baidoo, T., Mohammed, M., Agyenim, F. B., Kemausuor, F. & Narra, S. 2025. Environmental assessment of hybrid waste-to-energy system in ghana. Energies, 18, 595
  7. Budihardjo, M., Sumiyati, S., Sawitri, D., Octaviani, Y. & Wati, H. Using material flow analysis (mfa) for waste management planning in batang regency. IOP Conference Series: Earth and Environmental Science, 2023. IOP Publishing, 012029
  8. Christensen, T. H., Damgaard, A., Levis, J., Zhao, Y., Björklund, A., Arena, U., Barlaz, M., Starostina, V., Boldrin, A. & Astrup, T. F. 2020. Application of lca modelling in integrated waste management. Waste Management, 118, 313-322
  9. Chyang, C.-S., Han, Y.-L., Wu, L.-W., Wan, H.-P., Lee, H.-T. & Chang, Y.-H. 2010. An investigation on pollutant emissions from co-firing of rdf and coal. Waste Management, 30, 1334-1340
  10. Consonni, S. & Viganò, F. 2012. Waste gasification vs. Conventional waste-to-energy: A comparative evaluation of two commercial technologies. Waste management, 32, 653-666
  11. Darpawanto, N. J., Budihardjo, M. A., Muhammad, F. & Amalia, D. 2022. Kajian dampak lingkungan produksi batubara pt berau coal–site sambarata (smo) dengan metode life cycle assessment. Jurnal Ilmu Lingkungan, 20, 704-716
  12. Di Gianfilippo, M., Costa, G., Pantini, S., Allegrini, E., Lombardi, F. & Astrup, T. F. 2016. Lca of management strategies for rdf incineration and gasification bottom ash based on experimental leaching data. Waste Management, 47, 285-298
  13. Dubsok, A., Niyommaneerat, W., Suphasomboon, T., Sugsaisakon, S. & Kittipongvises, S. Environmental and climate impacts associated with refuse derived fuel (rdf) production: A case study in thailand. E3S Web of Conferences, 2024. EDP Sciences, 04006
  14. Edwards, J., Othman, M., Crossin, E. & Burn, S. 2017. Life cycle inventory and mass-balance of municipal food waste management systems: Decision support methods beyond the waste hierarchy. Waste Management, 69, 577-591
  15. Ekvall, T. & Weidema, B. P. 2004. System boundaries and input data in consequential life cycle inventory analysis. The international journal of life cycle assessment, 9, 161-171
  16. Fan, H. 2017. A critical review and analysis of construction equipment emission factors. Procedia engineering, 196, 351-358
  17. Gade, A. L., Hauschild, M. Z. & Laurent, A. 2021. Globally differentiated effect factors for characterising terrestrial acidification in life cycle impact assessment. Science of the Total Environment, 761, 143280
  18. Gorman, M. R. 2019. An assessment of environmental sustainability of non-fuel mining and mined materials in the us. Carnegie Mellon University
  19. Halimatussadiah, A., Kruger, W., Wagner, F., Afifi, F. A. R., Lufti, R. E. G. & Kitzing, L. 2024. The country of perpetual potential: Why is it so difficult to procure renewable energy in indonesia? Renewable and Sustainable Energy Reviews, 201, 114627
  20. Hapsari, O., Syafrudin, S. & Budihardjo, M. A. 2023. The potential of landfill waste in rembang city as raw material for refuse derived fuel (rdf). Jurnal Presipitasi: Media Komunikasi dan Pengembangan Teknik Lingkungan, 20, 219-228
  21. Heijungs, R., Guinée, J. B., Huppes, G., Lankreijer, R. M., Udo de Haes, H., Wegener Sleeswijk, A., Ansems, A., Eggels, P., Van Duin, R. & De Goede, H. 1992. Environmental life cycle assessment of products: Guide and backgrounds (part 1). Centre of Environmental Science, Leiden, The Netherlands,
  22. Huijbregts, M. A. & Seppälä, J. 2001. Life cycle impact assessment of pollutants causing aquatic eutrophication. The International Journal of Life Cycle Assessment, 6, 339-343
  23. Jaramillo, P., Griffin, W. M. & McCoy, S. T. 2009. Life cycle inventory of co2 in an enhanced oil recovery system. ACS Publications
  24. Jeswani, H. K., Falano, T. & Azapagic, A. 2015. Life cycle environmental sustainability of lignocellulosic ethanol produced in integrated thermo‐chemical biorefineries. Biofuels, Bioproducts and Biorefining, 9, 661-676
  25. Kara, M. 2012. Environmental and economic advantages associated with the use of rdf in cement kilns. Resources, Conservation and Recycling, 68, 21-28
  26. Khoo, H. H. 2009. Life cycle impact assessment of various waste conversion technologies. Waste management, 29, 1892-1900
  27. Kumawat, R., Gidwani, L. & Rana, K. B. 2024. Comparative analysis of life cycle assessment of biogas-powered and coal-powered power plant for optimized environmental operation. Heliyon, 10
  28. Laurent, A., Bakas, I., Clavreul, J., Bernstad, A., Niero, M., Gentil, E., Hauschild, M. Z. & Christensen, T. H. 2014. Review of lca studies of solid waste management systems–part i: Lessons learned and perspectives. Waste management, 34, 573-588
  29. Liang, X., Dang, W., Yang, G. & Zhang, Y. 2023. Environmental feasibility evaluation of cement co-production using classified domestic waste as alternative raw material and fuel: A life cycle perspective. Journal of Environmental Management, 326, 116726
  30. Liu, F., Cai, Q., Chen, S. & Zhou, W. 2015. A comparison of the energy consumption and carbon emissions for different modes of transportation in open-cut coal mines. International Journal of Mining Science and Technology, 25, 261-266
  31. Ministry of Energy and Mineral Resources, I. 2023. Energy mix and coal dependency trends
  32. Ogunkunle, O. & Ahmed, N. A. 2021. Overview of biodiesel combustion in mitigating the adverse impacts of engine emissions on the sustainable human–environment scenario. Sustainability, 13, 5465
  33. Paerl, H. W., Fulton, R. S., Moisander, P. H. & Dyble, J. 2001. Harmful freshwater algal blooms, with an emphasis on cyanobacteria. The Scientific World Journal, 1, 76-113
  34. Pambudi, N. A., Firdaus, R. A., Rizkiana, R., Ulfa, D. K., Salsabila, M. S., Suharno & Sukatiman 2023. Renewable energy in indonesia: Current status, potential, and future development. Sustainability, 15, 2342
  35. Papageorgiou, N., Dimitriou, P. D., Chatzivasileiou, D., Tsapakis, M. & Karakassis, I. 2023. Can imta provide added ecosystem value services in the fish farms of greece? Frontiers in Marine Science, 9, 1083099
  36. Reza, B., Soltani, A., Ruparathna, R., Sadiq, R. & Hewage, K. 2013. Environmental and economic aspects of production and utilization of rdf as alternative fuel in cement plants: A case study of metro vancouver waste management. Resources, Conservation and Recycling, 81, 105-114
  37. Rochat, D., Binder, C. R., Diaz, J. & Jolliet, O. 2013. Combining material flow analysis, life cycle assessment, and multiattribute utility theory: Assessment of end‐of‐life scenarios for polyethylene terephthalate in tunja, colombia. Journal of Industrial Ecology, 17, 642-655
  38. Salaripoor, H., Yousefi, H. & Abdoos, M. 2025. Life cycle environmental assessment of refuse-derived fuel (rdf) as an alternative to fossil fuels in cement production: A sustainable approach for mitigating carbon emissions. Fuel Communications, 22, 100135
  39. Sari, M. M., Inoue, T., Septiariva, I. Y., Yokota, K., Notodarmodjo, S. M., Kato, S., Suhardono, S. C., Al Ghifari, R. M. & Suryawan, I. W. K. 2024. Evaluating the potential of refuse derived fuel (rdf) in cement production: A comparative analysis of rdf variations in indonesia's emplacement pluit, jakarta. Jurnal Bahan Alam Terbarukan, 13, 48-57
  40. Seto, K. E., Panesar, D. K. & Churchill, C. J. 2017. Criteria for the evaluation of life cycle assessment software packages and life cycle inventory data with application to concrete. The International Journal of Life Cycle Assessment, 22, 694-706
  41. Sharma, R. & Gupta, K. 2020. Life cycle modeling for environmental management: A review of trends and linkages. Environmental Monitoring and Assessment, 192, 51
  42. Sharma, U., Sharma, D., Kumar, A., Bansal, T., Agarwal, A., Kumar, S., Hussian, A., Kamyab, H. & Haq, M. 2025. Utilization of refuse-derived fuel in industrial applications: Insights from uttar pradesh, india. Heliyon, 11.10.1016/j.heliyon.2024.e41336
  43. Siwal, S. S., Zhang, Q., Devi, N., Saini, A. K., Saini, V., Pareek, B., Gaidukovs, S. & Thakur, V. K. 2021. Recovery processes of sustainable energy using different biomass and wastes. Renewable and sustainable energy reviews, 150, 111483
  44. Tun, M. M. & Juchelková, D. 2019. Drying methods for municipal solid waste quality improvement in the developed and developing countries: A review. Environmental Engineering Research, 24, 529-542
  45. Velis, C., Wagland, S., Longhurst, P., Robson, B., Sinfield, K., Wise, S. & Pollard, S. 2012. Solid recovered fuel: Influence of waste stream composition and processing on chlorine content and fuel quality. Environmental Science & Technology, 46, 1923-1931
  46. Wagland, S. T., Kilgallon, P., Coveney, R., Garg, A., Smith, R., Longhurst, P. J., Pollard, S. J. & Simms, N. 2011. Comparison of coal/solid recovered fuel (srf) with coal/refuse derived fuel (rdf) in a fluidised bed reactor. Waste Management, 31, 1176-1183
  47. Wahyono, Y., Hadiyanto, H., Gheewala, S. H., Budihardjo, M. A. & Adiansyah, J. S. 2022. Evaluating the environmental impacts of the multi-feedstock biodiesel production process in indonesia using life cycle assessment (lca). Energy Conversion and Management, 266, 115832
  48. Widyarsana, I. & Saraswati, D. Domestic waste briquetting as refuse-derived-fuel for power plant alternative energy (case study: Bali province). IOP Conference Series: Earth and Environmental Science, 2022. IOP Publishing, 012080
  49. Yasar, A., Shabbir, S. A., Tabinda, A. B., Nazar, M., Rasheed, R., Malik, A. & Mukhtar, S. 2019. Refuse-derived fuels as a renewable energy source in comparison to coal, rice husk, and sugarcane bagasse. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 41, 564-572
  50. Yudiartono, Y., Windarta, J. & Adiarso, A. 2023. Sustainable long-term energy supply and demand: The gradual transition to a new and renewable energy system in indonesia by 2050. International Journal of Renewable Energy Development, 12
  51. Zaman, B., Sumiyati, S., Wati, H. & Aisy, A. Recovery of solid waste as refuse derived fuel (rdf) to develop urban waste management through community empowerment. IOP Conference Series: Earth and Environmental Science, 2024. IOP Publishing, 012021
  52. Zhou, X., Xie, F., Li, H., Zheng, C. & Zhao, X. 2024. Understanding inter-term fossil energy consumption pathways in china based on sustainable development goals. Geoscience Frontiers, 15, 101687

Last update:

No citation recorded.

Last update: 2025-08-01 05:27:15

No citation recorded.