skip to main content

Pengaruh Variabel Keruangan pada Periode Awal Penyebaran Pandemi Covid 19 di Kota Surabaya

*Karina Pradinie Tucunan orcid scopus  -  Departemen Perencanaan Wilayah dan Kota, Fakultas Sipil, Teknik Lingkungan dan Kebumian, , Indonesia
Rivan Aji  -  Departemen Perencanaan Wilayah dan Kota, Fakultas Sipil, Teknik Lingkungan dan Kebumian, , Indonesia
Utari Sulistyandari  -  Departemen Perencanaan Wilayah dan Kota, Fakultas Sipil, Teknik Lingkungan dan Kebumian, , Indonesia
Muhammad Sri Harta  -  Urban Spasial Indonesia, Indonesia
Putu Rudy Satiawan  -  Departemen Perencanaan Wilayah dan Kota, Fakultas Sipil, Teknik Lingkungan dan Kebumian, , Indonesia

Citation Format:
Abstract
Penyebaran  Covid -19 selama ini selalu dikaitkan dengan carrier atau orang yang membawa virus baik yang diidentifikasikan sebagai ODP, PDP dan juga Positif Covid 19 (Pos). Namun, banyak yang tidak menyadari bahwa selama ini intervensi yang dilakukan pemerintah secara umum adalah intervensi terhadap pola keruangan seperti bentuk-bentuk PSBB, lockdown, karantina wilayah dan juga pembatasan akses pada aktivitas publik lainnya. Ruang adalah instrument utama dari pengendalian Covid -19 disebabkan ruang adalah wadah dimana manusia beraktivitas. Satu karakter ruang tertentu dalam hypothesis penlitian ini dapat mempengaruhi tingkat penyebaran lebih cepat dibandingkan dengan ruang yang lain. Pendekatan positivistic dengan menggunakan regresi linier digunakan dalam mendekati penelitian ini untuk mendapatkan gambaran mengenai seberapa besar variable keruangan mempengaruhi peneybaran covid-19 dan sebaran secara spasialnya di Kota Surabaya. Pada penemuan hasil yang ada, ditemukan bahwa terdapat 3 periode masa penyebaran Covid 19 di Kota Surabaya, yakni pada masa awal, masa PSBB dan masa new normal. Pada masa penyebaran awal ditemukan bahwa variable keruangan berpengaruh sebesar 61% pada penyebaran Covid 19 dengan variable yang mempengaruhi adalah jumlah fasilitas sosial dan jumlah sebaran warung kopi (warkop) dengan konsentrasi penyebaran spasial di Surabaya Selatan, Timur dan Barat.
Fulltext View|Download
Keywords: Variabel Ruang, Covid 19, Penyebaran Awal
Funding: DRPM ITS, Urban and Regional Planning Department

Article Metrics:

  1. Acuto, M. (2020). COVID-19: Lessons for an Urban(izing) World. One Earth. https://doi.org/10.1016/j.oneear.2020.04.004
  2. Allam, Z., & Jones, D. S. (2020). On the Coronavirus (COVID-19) Outbreak and the Smart City Network: Universal Data Sharing Standards Coupled with Artificial Intelligence (AI) to Benefit Urban Health Monitoring and Management. Healthcare. https://doi.org/10.3390/healthcare8010046
  3. Athens, L. (2010). Naturalistic inquiry in theory and practice. Journal of Contemporary Ethnography. https://doi.org/10.1177/0891241609343663
  4. Beale, C. M., Lennon, J. J., Yearsley, J. M., Brewer, M. J., & Elston, D. A. (2010). Regression analysis of spatial data. In Ecology Letters. https://doi.org/10.1111/j.1461-0248.2009.01422.x
  5. Carozzi, F., Provenzano, S., & Roth, S. (2020). Urban density and COVID-19. IZA Institute of Labor Economics
  6. Chen, X., & Chen, H. H. (2020). Differences in preventive behaviors of covid-19 between urban and rural residents: Lessons learned from a cross-sectional study in china. International Journal of Environmental Research and Public Health. https://doi.org/10.3390/ijerph17124437
  7. Chowell, G., Bettencourt, L. M. A., Johnson, N., Alonso, W. J., & Viboud, C. (2008). The 1918-1919 influenza pandemic in England and Wales: Spatial patterns in transmissibility and mortality impact. Proceedings of the Royal Society B: Biological Sciences. https://doi.org/10.1098/rspb.2007.1477
  8. Ciavarella, C., Fumanelli, L., Merler, S., Cattuto, C., & Ajelli, M. (2016). School closure policies at municipality level for mitigating influenza spread: A model-based evaluation. BMC Infectious Diseases. https://doi.org/10.1186/s12879-016-1918-z
  9. Colizza, V., Barrat, A., Barthelemy, M., Valleron, A. J., & Vespignani, A. (2007). Modeling the worldwide spread of pandemic influenza: Baseline case and containment interventions. PLoS Medicine. https://doi.org/10.1371/journal.pmed.0040013
  10. Creswell, J. (2013). Qualitative, quantitative, and mixed methods approaches. In Research design
  11. Duchmann, R. (2020). COVID-19 COVID-19 COVID-19 COVID-19 COVID-19 COVID-19. Endo-Praxis. https://doi.org/10.1055/a-1229-5048
  12. Eggo, R. M., Cauchemez, S., & Ferguson, N. M. (2011). Spatial dynamics of the 1918 influenza pandemic in England, Wales and the United States. Journal of the Royal Society Interface. https://doi.org/10.1098/rsif.2010.0216
  13. Guliyev, H. (2020). Determining the spatial effects of COVID-19 using the spatial panel data model. Spatial Statistics. https://doi.org/10.1016/j.spasta.2020.100443
  14. Guo, D. (2007). Visual analytics of spatial interaction patterns for pandemic decision support. International Journal of Geographical Information Science. https://doi.org/10.1080/13658810701349037
  15. Huang, R., Liu, M., & Ding, Y. (2020). Spatial-temporal distribution of COVID-19 in China and its prediction: A data-driven modeling analysis. Journal of Infection in Developing Countries. https://doi.org/10.3855/jidc.12585
  16. Kitchin, R. (2006). Positivistic geographies and spatial science. In Approaches to Human Geography. https://doi.org/10.4135/9781446215432.n2
  17. Lai, S., Leone, F., & Zoppi, C. (2020). Covid-19 and spatial planning. TeMA. Journal of Land Use, Mobility and Environment
  18. Liu, L. (2020). Emerging study on the transmission of the Novel Coronavirus (COVID-19) from urban perspective: evidence from China. Cities. https://doi.org/10.1016/j.cities.2020.102759
  19. Merler, S., & Ajelli, M. (2010). The role of population heterogeneity and human mobility in the spread of pandemic influenza. Proceedings of the Royal Society B: Biological Sciences. https://doi.org/10.1098/rspb.2009.1605
  20. Mishra, S. V., Gayen, A., & Haque, S. M. (2020). COVID-19 and urban vulnerability in India. Habitat International. https://doi.org/10.1016/j.habitatint.2020.102230
  21. Pourghasemi, H. R., Pouyan, S., Heidari, B., Farajzadeh, Z., Fallah Shamsi, S. R., Babaei, S., Khosravi, R., Etemadi, M., Ghanbarian, G., Farhadi, A., Safaeian, R., Heidari, Z., Tarazkar, M. H., Tiefenbacher, J. P., Azmi, A., & Sadeghian, F. (2020). Spatial modeling, risk mapping, change detection, and outbreak trend analysis of coronavirus (COVID-19) in Iran (days between February 19 and June 14, 2020). International Journal of Infectious Diseases. https://doi.org/10.1016/j.ijid.2020.06.058
  22. Prem, K., Liu, Y., Russell, T., Kucharski, A., Eggo, R., Davies, N., Group, C. for the M. M., Jit, M., & Klepac, P. (2020). The Effect of Control Strategies that Reduce Social Mixing on Outcomes of the COVID-19 Epidemic in Wuhan, China. SSRN Electronic Journal. https://doi.org/10.1101/2020.03.09.20033050
  23. Rader, B., Scarpino, S. V., Nande, A., Hill, A. L., Adlam, B., Reiner, R. C., Pigott, D. M., Gutierrez, B., Zarebski, A. E., Shrestha, M., Brownstein, J. S., Castro, M. C., Dye, C., Tian, H., Pybus, O. G., & Kraemer, M. U. G. (2020). Crowding and the shape of COVID-19 epidemics. Nature Medicine. https://doi.org/10.1038/s41591-020-1104-0
  24. Sharifi, A., & Khavarian-Garmsir, A. R. (2020). The COVID-19 pandemic: Impacts on cities and major lessons for urban planning, design, and management. In Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2020.142391
  25. Wheeler, D. C. (2014). Geographically weighted regression. In Handbook of Regional Science. https://doi.org/10.1007/978-3-642-23430-9_77
  26. You, H., Wu, X., & Guo, X. (2020). Distribution of covid-19 morbidity rate in association with social and economic factors in wuhan, china: Implications for urban development. International Journal of Environmental Research and Public Health. https://doi.org/10.3390/ijerph17103417
  27. Regulasi dan Berita
  28. Arahan Presiden Terkait Kebijakan Pemerintah Pusat dan Daerah Tangani Covid-19. (n.d.). Retrieved August 21st 2020, from https://www.presidenri.go.id/siaran-pers/arahan-presiden-terkait-kebijakan-pemerintah-pusat-dan-daerah-tangani-covid-19/
  29. Indonesia.go.id. (2020). Kasus Covid-19 Pertama, Masyarakat Jangan Panik. Retrieved August 21st 2020, from https://indonesia.go.id/narasi/indonesia-dalam-angka/ekonomi/kasus-covid-19-pertama-masyarakat-jangan-panik
  30. Keputusan Gubernur Jawa Timur No.188/202/KPTS/013/2020 Pemberlakuan Pembatasan Sosial Berskala Besar (PSBB) dalam Penanganan Corona Virus Disease 2019 (COVID-19) Di Wilayah Kota Surabaya, Kabupaten Sidoarjo, dan Kabupaten Gresik
  31. Kementerian Kesehatan Republik Indonesia. (2020). Dashboard Kasus COVID-19 di Indonesia: 2020-03-02 s/d sekarang. Retrieved August 21st 2020, from https://www.kemkes.go.id/article/view/20031900002/Dashboard-Data-Kasus-COVID-19-di-Indonesia.html
  32. Peraturan Menteri Kesehatan Republik Indonesia Nomor 9 Tahun 2020 tentang Pedoman Pembatasan Sosial Berskala Besar dalam Rangka Percepatan Penanganan Corona Virus Disease 2019 (COVID-19)
  33. Sambut New Normal, Ini Permintaan Risma ke Warga Surabaya. Retrieved November 27th 2020, from https://surabaya.kompas.com/read/2020/06/23/22180061/sambut-new-normal-ini-permintaan-risma-ke-warga-surabaya?page=all
  34. Surabaya Raya Resmi Masuk Masa Transisi New Normal, Ada 5 Komitmen yang Disepakati. Retrieved 27th November 2020, from https://www.merdeka.com/peristiwa/surabaya-raya-resmi-masuk-masa-transisi-new-normal-ada-5-komitmen-yang-disepakati.html
  35. PSBB Surabaya dan Sekitarnya Diperpanjang Kembali Sampai 9 Juni 2020. Retrieved 27th November 2020m from https://surabaya.bisnis.com/read/20200524/531/1244189/psbb-surabaya-dan-sekitarnya-diperpanjang-kembali-sampai-9-juni-2020

Last update:

No citation recorded.

Last update: 2025-01-20 12:44:30

No citation recorded.