skip to main content

Pre-Positioning Pusat Distribusi Bantuan Bencana Banjir di Kota Surakarta, Indonesia dengan Menggunakan Metoda Fuzzy Electre

*Eko Setiawan orcid scopus  -  Teknik Industri, Fakultas Teknik, Universitas Muhammadiyah Surakarta, Indonesia
Anggit Kartiko Murti  -  Teknik Industri, Fakultas Teknik, Universitas Muhammadiyah Surakarta, Indonesia

Citation Format:
Abstract
Penelitian ini bertujuan untuk memilih lokasi pusat distribusi bantuan bencana banjir di Kota Surakarta, Indonesia. Untuk keperluan tersebut, penelitian ini menggunakan metoda fuzzy Electre. Pengambilan data dilakukan dengan penyebaran kuesioner dan pelaksanaan wawancara kepada pihak yang berwenang di Badan Penanggulangan Bencana Daerah (BPBD) Kota Surakarta. Dengan menggunakan metode fuzzy Electre dan dengan penyebaran kuesioner maupun wawancara tersebut, didapatkan 4 kriteria - yakni ”Lokasi aman dan dekat dengan lokasi banjir”; ”Lokasi cukup berada di ketinggian’; ”Lokasi berada di kelurahan yang tidak terdampak’;  dan ”Lokasi merupakan tempat terjadinya korban terbanyak” - dan 16 alternatif lokasi. Dari pengolahan data, Lapangan Joyotakan di Kelurahan Serengan terpilih sebagai alternatif lokasi terbaik untuk dijadikan pusat distribusi bantuan bencana banjir di Kota Surakarta. Hasil penelitian ini diharapkan mampu membantu BPBD Kota Surakarta di dalam menentukan lokasi pusat distribusi bantuan bencana banjir di Kota Surakarta untuk beberapa tahun mendatang.

Note: This article has supplementary file(s).

Fulltext View|Download |  common.other
Untitled
Subject
Type Other
  Download (262KB)    Indexing metadata
Keywords: Fuzzy Electre, Penentuan Lokasi, Surakarta

Article Metrics:

  1. Abazari, S. R., Aghsami, A., & Rabbani, M. (2021). Prepositioning and distributing relief items in humanitarian logistics with uncertain parameters. Socio-Economic Planning Sciences, 74(August 2019), 100933. https://doi.org/10.1016/j.seps.2020.100933
  2. Ak, M. F., & Acat, D. (2021). Selection of humanitarian supply chain warehouse location: A case study based on the MCDM methodology. European Journal of Science and Technology, (22), 400–409. https://doi.org/10.31590/ejosat.849896
  3. Ali Torabi, S., Shokr, I., Tofighi, S., & Heydari, J. (2018). Integrated relief pre-positioning and procurement planning in humanitarian supply chains. Transportation Research Part E: Logistics and Transportation Review, 113(March), 123–146. https://doi.org/10.1016/j.tre.2018.03.012
  4. Bai, X., Gao, J., & Liu, Y. (2018). Prepositioning emergency supplies under uncertainty. parametric optimization method. Engineering Optimization, 50(7), 1114–1133. https://doi.org/10.1080/0305215X.2017.1328508
  5. Baskaya, S., Ertem, M. A., & Duran, S. (2017). Pre-positioning of relief items in humanitarian logistics considering lateral transhipment opportunities. Socio-Economic Planning Sciences, 57, 50–60. https://doi.org/10.1016/j.seps.2016.09.001
  6. Bayram, V., & Yaman, H. (2018). Shelter location and evacuation route assignment under uncertainty: A benders decomposition approach. Transportation Science, 52(2), 416–436. https://doi.org/10.1287/trsc.2017.0762
  7. BNPB. (2012). Peraturan Kepala Badan Nasional Penanggulangan Bencana Nomor 10 tahun 2012 tentang Pengelolaan bantuan logistik pada status keadaan darurat bencana (p. 40). p. 40
  8. BNPB. (2018). Peraturan Badan Nasional Penanggulangan Bencana Republik Indonesia nomor 04 tahun 2018 tentang Sistem manajemen logistik dan peralatan. Berita Negara Republik Indonesia Tahun 2018 Nomor 828, p. 13. Retrieved from https://www.uam.es/gruposinv/meva/publicaciones jesus/capitulos_espanyol_jesus/2005_motivacion para el aprendizaje Perspectiva alumnos.pdf%0A
  9. BNPB. (2021). Data & Informasi Bencana Indonesia. Retrieved February 26, 2021, from BNPB website: https://dibi.bnpb.go.id/
  10. Bolturk, E., Onar, S. C., Oztaysi, B., Kahraman, C., & Goztepe, K. (2016). Multiattribute warehouse location selection in humanitarian logistics using hesitant fuzzy AHP. International Journal of the Analytic Hierarchy Process, 8(2), 271–298. https://doi.org/10.13033/ijahp.v8i2.387
  11. BPS Kota Surakarta. (2021). Kota Surakarta dalam Angka. Surakarta: BPS Kota Surakarta
  12. Cavdur, F., Kose-Kucuk, M., & Sebatli, A. (2021). Allocation of Temporary Disaster-Response Facilities for Relief-Supplies Distribution: A Stochastic Optimization Approach for Afterdisaster Uncertainty. Natural Hazards Review, 22(1), 05020013. https://doi.org/10.1061/(asce)nh.1527-6996.0000416
  13. Çetinkaya, C., Özceylan, E., Erbaş, M., & Kabak, M. (2016). GIS-based fuzzy MCDA approach for siting refugee camp: A case study for southeastern Turkey. International Journal of Disaster Risk Reduction, 18, 218–231. https://doi.org/10.1016/j.ijdrr.2016.07.004
  14. Chen, T.-Y. (2017). A likelihood-based assignment method for multiple criteria decision analysis with interval type-2 fuzzy information. Neural Computing and Applications, 28(12), 4023–4045. https://doi.org/10.1007/s00521-016-2288-6
  15. Chen, Y. xin, Tadikamalla, P. R., Shang, J., & Song, Y. (2020). Supply allocation: bi-level programming and differential evolution algorithm for Natural Disaster Relief. Cluster Computing, 23(1), 203–217. https://doi.org/10.1007/s10586-017-1366-6
  16. Condeixa, L. D., Leiras, A., Oliveira, F., & de Brito, I. (2017). Disaster relief supply pre-positioning optimization: A risk analysis via shortage mitigation. International Journal of Disaster Risk Reduction, 25, 238–247. https://doi.org/10.1016/j.ijdrr.2017.09.007
  17. Curran, R. W., Bates, M. E., & Bell, H. M. (2014). Multi-criteria decision analysis approach to site suitability of U.S. Department of Defense humanitarian assistance projects. Procedia Engineering, 78, 59–63. https://doi.org/10.1016/j.proeng.2014.07.039
  18. De Wrachien, D., Mambretti, S., & Schultz, B. (2011). Flood management and risk assessment in flood-prone areas: Measures and solutions. Irrigation and Drainage, 60(2), 229–240. https://doi.org/10.1002/ird.557
  19. Diskominfo Kota Surakarta. (2017). Separuh Kelurahan di Surakarta Rawan Banjir. Retrieved May 31, 2021, from Diskominfo Kota Surakarta website: https://surakarta.go.id/?p=8253
  20. Doodman, M., Shokr, I., Bozorgi-Amiri, A., & Jolai, F. (2019). Pre-positioning and dynamic operations planning in pre- and post-disaster phases with lateral transhipment under uncertainty and disruption. Journal of Industrial Engineering International, 15(s1), 53–68. https://doi.org/10.1007/s40092-019-0317-7
  21. Dukcapil Kota Surakarta. (2021). Peta Kota Surakarta. Retrieved May 18, 2021, from https://dispendukcapil.surakarta.go.id/pelayanan-kami/pelayanan-online/siaksara/
  22. Duran, S., Gutierrez, M. A., & Keskinocak, P. (2011). Pre-positioning of emergency items for CARE international. Interfaces, 41(3), 223–237. https://doi.org/10.1287/inte.1100.0526
  23. Evsyukov, Y. D., Rudnev, V. I., Kuklev, S. B., & Borisov, D. G. (2014). Changed bottom relief of Golubaya Bay after the catastrophic flood of July 6-7, 2012, northeastern Black Sea. Doklady Earth Sciences, 456(1), 627–630. https://doi.org/10.1134/S1028334X14030246
  24. Galindo, G., & Batta, R. (2013). Prepositioning of supplies in preparation for a hurricane under potential destruction of prepositioned supplies. Socio-Economic Planning Sciences, 47(1), 20–37. https://doi.org/10.1016/j.seps.2012.11.002
  25. Gama, M., Santos, B. F., & Scaparra, M. P. (2016). A multi-period shelter location-allocation model with evacuation orders for flood disasters. EURO Journal on Computational Optimization, 4(3–4), 299–323. https://doi.org/10.1007/s13675-015-0058-3
  26. Geng, S., Hou, H., & Zhang, S. (2020). Multi-criteria location model of emergency shelters in humanitarian logistics. Sustainability (Switzerland), 12(5), 1–22. https://doi.org/10.3390/su12051759
  27. Godschall, S., Smith, V., Hubler, J., & Kremer, P. (2020). A decision process for optimizing multi-hazard shelter location using global data. Sustainability (Switzerland), 12(15), 1–18. https://doi.org/10.3390/SU12156252
  28. Gu, J., Zhou, Y., Das, A., Moon, I., & Lee, G. M. (2018). Medical relief shelter location problem with patient severity under a limited relief budget. Computers and Industrial Engineering, 125, 720–728. https://doi.org/10.1016/j.cie.2018.03.027
  29. Hakim, R. T., & Kusumastuti, R. D. (2018). A model to determine relief warehouse location in East Jakarta using the analytic hierarchy process. International Journal of Technology, 9(7), 1405–1414. https://doi.org/10.14716/ijtech.v9i7.1596
  30. Hallak, J., & Mic, P. (2021). Multi criteria decision making approach to the evaluation of humanitarian relief warehouses integrating fuzzy logic: A case study in Syria. European Journal of Science and Technology, (22), 71–80. https://doi.org/10.31590/ejosat.850693
  31. Hatami-Marbini, A., Tavana, M., Moradi, M., & Kangi, F. (2013). A fuzzy group Electre method for safety and health assessment in hazardous waste recycling facilities. Safety Science, 51(1), 414–426. https://doi.org/10.1016/j.ssci.2012.08.015
  32. Jawa Pos Radar Solo. (2021). Kisah Mereka Yang Akrab Disapa Banjir Bengawan Solo. Retrieved June 1, 2021, from https://radarsolo.jawapos.com/ website:
  33. Klibi, W., Ichoua, S., & Martel, A. (2018). Prepositioning emergency supplies to support disaster relief: A case study using stochastic programming. Infor, 56(1), 50–81. https://doi.org/10.1080/03155986.2017.1335045
  34. Li, A. C. Y., Nozick, L., Xu, N., & Davidson, R. (2012). Shelter location and transportation planning under hurricane conditions. Transportation Research Part E: Logistics and Transportation Review, 48(4), 715–729. https://doi.org/10.1016/j.tre.2011.12.004
  35. Liang, B., Yang, D., Qin, X., & Tinta, T. (2019). A risk-averse shelter location and evacuation routing assignment problem in an uncertain environment. International Journal of Environmental Research and Public Health, 16(20), 1–28. https://doi.org/10.3390/ijerph16204007
  36. Mahootchi, M., & Golmohammadi, S. (2018). Developing a new stochastic model considering bi-directional relations in a natural disaster: a possible earthquake in Tehran (the Capital of Islamic Republic of Iran). Annals of Operations Research, 269(1–2), 439–473. https://doi.org/10.1007/s10479-017-2596-y
  37. Miranda, F. N., & Ferreira, T. M. (2019). A simplified approach for flood vulnerability assessment of historic sites. Natural Hazards, 96(2), 713–730. https://doi.org/10.1007/s11069-018-03565-1
  38. Mohammadi, R., Ghomi, S. M. T. F., & Jolai, F. (2016). Prepositioning emergency earthquake response supplies: A new multi-objective particle swarm optimization algorithm. Applied Mathematical Modelling, 40(9–10), 5183–5199. https://doi.org/10.1016/j.apm.2015.10.022
  39. Mostajabdaveh, M., Gutjahr, W. J., & Sibel Salman, F. (2019). Inequity-averse shelter location for disaster preparedness. IISE Transactions, 51(8), 809–829. https://doi.org/10.1080/24725854.2018.1496372
  40. Okaka, F. O., & Odhiambo, B. D. O. (2019). Health vulnerability to flood-induced risks of households in flood-prone informal settlements in the Coastal City of Mombasa, Kenya. Natural Hazards, 99(2), 1007–1029. https://doi.org/10.1007/s11069-019-03792-0
  41. Ozbay, E., Çavuş, Ö., & Kara, B. Y. (2019). Shelter site location under multi-hazard scenarios. Computers and Operations Research, 106, 102–118. https://doi.org/10.1016/j.cor.2019.02.008
  42. Pérez-Galarce, F., Canales, L. J., Vergara, C., & Candia-Véjar, A. (2017). An optimization model for the location of disaster refuges. Socio-Economic Planning Sciences, 59, 56–66. https://doi.org/10.1016/j.seps.2016.12.001
  43. Qi, W., Ma, C., Xu, H., Chen, Z., Zhao, K., & Han, H. (2021). A review on applications of urban flood models in flood mitigation strategies. In Natural Hazards. Springer Netherlands. https://doi.org/10.1007/s11069-021-04715-8
  44. Roh, S. Y., Shin, Y. R., & Seo, Y. J. (2018). The Pre-positioned Warehouse Location Selection for International Humanitarian Relief Logistics. Asian Journal of Shipping and Logistics, 34(4), 297–307. https://doi.org/10.1016/j.ajsl.2018.12.003
  45. Sanyal, J., & Lu, X. X. (2009). Ideal location for flood shelter: A geographic information system approach. Journal of Flood Risk Management, 2(4), 262–271. https://doi.org/10.1111/j.1753-318X.2009.01043.x
  46. Sekretariat Negara RI. (2007). Undang-Undang Republik Indonesia Nomor 24 Tahun 2007 tentang Penanggulangan Bencana. Lembaran Negara Republik Indonesia Tahun 2007 Nomor 66, p. 50. Jakarta, Indonesia: Sekretariat Negara RI
  47. Sekretariat Negara RI. (2008). Peraturan Pemerintah Republik Indonesia Nomor 21 tahun 2008 tentang Penyelenggaraan Penanggulangan Bencana. Lembaran Negara Republik Indonesia Tahun 2008 Nomor 42, p. 73
  48. Smith, K. (2013). Environmental Hazards: Assessing Risks and Reducing Disaster (6th Editio). New York: Routledge
  49. Solo Pos. (2020). Ini Titik Banjir di Solo Akibat Luapan Sungai Bengawan Solo Tadi Malam. Retrieved June 1, 2021, from solopos.com website: https://www.solopos.com/ini-titik-banjir-di-solo-akibat-luapan-sungai-bengawan-solo-tadi-malam-1097299
  50. Solo Pos. (2021). Menanti Janji Pemkot Tuntaskan Banjir di Kota Solo. Retrieved June 1, 2021, from solopos.com website: https://www.solopos.com/menanti-janji-pemkot-tuntaskan-banjir-di-kota-solo-1128137
  51. Soltani-Sobh, A., Heaslip, K., Scarlatos, P., & Kaisar, E. (2016). Reliability based pre-positioning of recovery centers for resilient transportation infrastructure. International Journal of Disaster Risk Reduction, 19, 324–333. https://doi.org/10.1016/j.ijdrr.2016.09.004
  52. Susanty, A., Bakhtiar, A., & Sulistyawan, A. (2016). Penentuan Lokasi Gudang Darurat Bencana Di Provinsi Dki Jakarta Dengan Pendekatan Ahp, Cluster Analysis, Dan Topsis. Jurnal Ilmiah Manajemen, VI(3), 434–448
  53. Tai, C. A., Lee, Y. L., & Lin, C. Y. (2010). Urban disaster prevention shelter location and evacuation behavior analysis. Journal of Asian Architecture and Building Engineering, 9(1), 215–220. https://doi.org/10.3130/jaabe.9.215
  54. Tribunnews.com. (2021). Ini Daftar Wilayah di Solo Raya yang Terendam Banjir, Terparah di Kampung Sewu dan Semanggi. Retrieved June 1, 2021, from Tribunnews.com website: https://www.tribunnews.com/regional/2021/02/04/ini-daftar-wilayah-di-solo-raya-yang-terendam-banjir-terparah-di-kampung-sewu-dan-semanggi
  55. Trivedi, A. (2018). A multi-criteria decision approach based on DEMATEL to assess determinants of shelter site selection in disaster response. International Journal of Disaster Risk Reduction, 31, 722–728. https://doi.org/10.1016/j.ijdrr.2018.07.019
  56. Trivedi, A., & Singh, A. (2017). A hybrid multi-objective decision model for emergency shelter location-relocation projects using fuzzy analytic hierarchy process and goal programming approach. International Journal of Project Management, 35(5), 827–840. https://doi.org/10.1016/j.ijproman.2016.12.004
  57. Velasquez, G. A., Mayorga, M. E., & Cruz, E. A. R. (2019). Prepositioning inventory for disasters: a robust and equitable model. OR Spectrum, 41(3), 757–785. https://doi.org/10.1007/s00291-019-00554-z
  58. Wei, L., Li, W., Li, K., Liu, H., & Cheng, L. (2012). Decision support for urban shelter locations based on covering model. Procedia Engineering, 43, 59–64. https://doi.org/10.1016/j.proeng.2012.08.011
  59. Xu, W., Zhao, X., Ma, Y., Li, Y., Qin, L., Wang, Y., & Du, J. (2018). A multi-objective optimization based method for evaluating earthquake shelter location-allocation. Geomatics, Natural Hazards and Risk, 9(1), 662–677. https://doi.org/10.1080/19475705.2018.1470114
  60. Yari, A., Ostadtaghizadeh, A., Ardalan, A., Zarezadeh, Y., Rahimiforoushani, A., & Bidarpoor, F. (2020). Risk factors of death from flood: Findings of a systematic review. Journal of Environmental Health Science and Engineering, 18(2), 1643–1653. https://doi.org/10.1007/s40201-020-00511-x
  61. Yılmaz, H., & Kabak, Ö. (2020). Prioritizing distribution centers in humanitarian logistics using type-2 fuzzy MCDM approach. Journal of Enterprise Information Management, 33(5), 1199–1232. https://doi.org/10.1108/JEIM-09-2019-0310
  62. Zhao, X., Chen, J., Xu, W., Lou, S., Du, P., Yuan, H., & Ip, K. P. (2019). A three-stage hierarchical model for an earthquake shelter location-allocation problem: Case study of Chaoyang District, Beijing, China. Sustainability (Switzerland), 11(17). https://doi.org/10.3390/su11174561
  63. Zhao, X., Coates, G., & Xu, W. (2019). A hierarchical mathematical model of the earthquake shelter location-allocation problem solved using an interleaved MPSO–GA. Geomatics, Natural Hazards and Risk, 10(1), 1712–1737. https://doi.org/10.1080/19475705.2019.1609605

Last update:

  1. Formulating Disaster Mitigation Strategies for Surakarta City, Indonesia by Using Risk Matrix and House of Risk Phase 2

    Eko Setiawan, Tamim Mujadid Mahendra, R. Fatoni, F. Camelia, A. Kristanto, Ardiyanto, W. Setiawan, A. Mulyaningtyas, E. Setiawan, A.D. Anggono, M. Kusban, F. Tri Nugrahaini, A.S. Putri, D.A. Prasetya, N. Aklis, N. Hidayati, G.A. Prasetyaningtiyas. E3S Web of Conferences, 517 , 2024. doi: 10.1051/e3sconf/202451703002

Last update: 2024-11-22 03:47:16

No citation recorded.