BibTex Citation Data :
@article{Reaktor14915, author = {L. Buchori and Y. Bindar and D. Sasongko and IGBN Makertihartha}, title = {2-d mathematical and numerical modeling of fluid flow inside and outside packing in catalytic packed bed reactor}, journal = {Reaktor}, volume = {5}, number = {1}, year = {2017}, keywords = {finite volume method, porous media, flow distribution, velocity profile}, abstract = { Generally, the momentum equation of fluid flow in porous media was solved by neglecting the terms of diffusion and convection such as Ergun, Darcy, Brinkman and Forchheimer models. Their model primarily applied for laminar flow. It is true that these model are limited to condition whether the models can be applied. Analytical solution for the model type above is available only for simple one-dimensional cases. For two or three-dimentional problem, numerical solution is the only solution. This work advances the flow model in porous media and provide two-dimentional flow field solution in porous media, which includes the diffusion and convection terms. The momentum lost due to flow and porous material interaction is modeled using the available Brinkman-Forchheimer equation. The numerical method to be used is finite volume method. This method is suitable for the characteristic of fluid flow in porous media which is averaged by a volume base. The effect of the solid and fluid interaction in porous media is the basic principle of the flow model in morous media. The Brinkman-Forchheimer consider the momentum lost term to be determined by a quadratic function of the velocity component. The momentum and the continuity equation are solved for two-dimentional cylindrical coordinat . the result were validated with the experimental data. The velocity of the porous media was treated to be radially oscillated. The result of velocity profile inside packing show a good agreement in their trend with the Stephenson and Steward experimental data. The local superficial velocity attains its global maximum and minimum at distances near 0.201 and 0.57 particle diameter, d p. velocity profile below packing was simulated. The result were validated with Schwartz and Smith experimental data. The result also show an excellent agreement with those experimental data. Keywords : finite volume method, porous media, flow distribution, velocity profile}, issn = {2407-5973}, pages = {1--7} doi = {10.14710/reaktor.5.1.1-7}, url = {https://ejournal.undip.ac.id/index.php/reaktor/article/view/14915} }
Refworks Citation Data :
Generally, the momentum equation of fluid flow in porous media was solved by neglecting the terms of diffusion and convection such as Ergun, Darcy, Brinkman and Forchheimer models. Their model primarily applied for laminar flow. It is true that these model are limited to condition whether the models can be applied. Analytical solution for the model type above is available only for simple one-dimensional cases. For two or three-dimentional problem, numerical solution is the only solution. This work advances the flow model in porous media and provide two-dimentional flow field solution in porous media, which includes the diffusion and convection terms. The momentum lost due to flow and porous material interaction is modeled using the available Brinkman-Forchheimer equation. The numerical method to be used is finite volume method. This method is suitable for the characteristic of fluid flow in porous media which is averaged by a volume base. The effect of the solid and fluid interaction in porous media is the basic principle of the flow model in morous media. The Brinkman-Forchheimer consider the momentum lost term to be determined by a quadratic function of the velocity component. The momentum and the continuity equation are solved for two-dimentional cylindrical coordinat . the result were validated with the experimental data. The velocity of the porous media was treated to be radially oscillated. The result of velocity profile inside packing show a good agreement in their trend with the Stephenson and Steward experimental data. The local superficial velocity attains its global maximum and minimum at distances near 0.201 and 0.57 particle diameter, dp. velocity profile below packing was simulated. The result were validated with Schwartz and Smith experimental data. The result also show an excellent agreement with those experimental data.
Article Metrics:
Last update:
Last update: 2025-01-31 19:47:00
In order for REAKTOR to publish and disseminate research articles, we need non-exclusive publishing rights (transferred from the author(s) to the publisher). This is determined by a publishing agreement between the Author(s) and REAKTOR. This agreement deals with transferring or licensing the publishing copyright to REAKTOR while Authors still retain significant rights to use and share their published articles. REAKTOR supports the need for authors to share, disseminate, and maximize the impact of their research and these rights in any databases.
As a journal author, you have the right to use your article for many purposes, including by your employing institute or company. These Author rights can be exercised without the need to obtain specific permission. Authors publishing in BCREC journals have wide rights to use their works for teaching and scholarly purposes without needing to seek permission, including, but not limited to:
Authors/Readers/Third Parties can copy and redistribute the material in any medium or format and remix, transform, and build upon the material for any purpose, even commercially. Still, they must give appropriate credit (the name of the creator and attribution parties (authors detail information), a copyright notice, an open access license notice, a disclaimer notice, and a link to the material), provide a link to the license, and indicate if changes were made (Publisher indicates the modification of the material (if any).
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g., display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-ShareAlike (CC BY-SA).
JURNAL REAKTOR (p-ISSN: 0852-0798; e-ISSN: 2407-5973)
Published by Departement of Chemical Engineering, Diponegoro University