BibTex Citation Data :
@article{Reaktor16579, author = {Ahmad Zikri and Erlinawati . and Lety Trisnaliani and Daya Wulandari}, title = {The Design of ACE (Aluminum Corrosion and Electrolysis) Reactor and Its Performance to Produce Hydrogen from Beverage Cans}, journal = {Reaktor}, volume = {17}, number = {4}, year = {2018}, keywords = {}, abstract = { A bstract The reaction of aluminum (Al) with an alkaline solution in producing hydrogen gas has been known for a long time. This aluminum corrosion reaction has a major obstacle in the passivation phenomenon, a formation of aluminum oxide coating on the metal surface that prevents aluminum from collapsing. Integration of electric current to the potassium hydroxide solution could result in electrolysis of water which increases the production of hydrogen. This process was carried out continuously in an ACE (aluminum corrosion and electrolysis) reactor of water. This reactor design enabled to produce hydrogen and oxygen in separating chamber. The use of 10 g of cans, 0.02 M gallium, 12 VDC, and 0.8 M KOH obtained the maximum production rate of hydrogen 162.58 ml/s with a purity of 79.83%. Keywords: aluminum corrosion ; hydrogen ; water electrolysis }, issn = {2407-5973}, pages = {210--214} doi = {10.14710/reaktor.17.4.210-214}, url = {https://ejournal.undip.ac.id/index.php/reaktor/article/view/16579} }
Refworks Citation Data :
Abstract
The reaction of aluminum (Al) with an alkaline solution in producing hydrogen gas has been known for a long time. This aluminum corrosion reaction has a major obstacle in the passivation phenomenon, a formation of aluminum oxide coating on the metal surface that prevents aluminum from collapsing. Integration of electric current to the potassium hydroxide solution could result in electrolysis of water which increases the production of hydrogen. This process was carried out continuously in an ACE (aluminum corrosion and electrolysis) reactor of water. This reactor design enabled to produce hydrogen and oxygen in separating chamber. The use of 10 g of cans, 0.02 M gallium, 12 VDC, and 0.8 M KOH obtained the maximum production rate of hydrogen 162.58 ml/s with a purity of 79.83%.
Keywords: aluminum corrosion; hydrogen; water electrolysis
Article Metrics:
Last update:
Processing of Used Beveraged Waste for Production of Hydroge Gas with Electrolysis Process Using NaOH Catalyst
Last update: 2025-02-02 08:07:14
In order for REAKTOR to publish and disseminate research articles, we need non-exclusive publishing rights (transferred from the author(s) to the publisher). This is determined by a publishing agreement between the Author(s) and REAKTOR. This agreement deals with transferring or licensing the publishing copyright to REAKTOR while Authors still retain significant rights to use and share their published articles. REAKTOR supports the need for authors to share, disseminate, and maximize the impact of their research and these rights in any databases.
As a journal author, you have the right to use your article for many purposes, including by your employing institute or company. These Author rights can be exercised without the need to obtain specific permission. Authors publishing in BCREC journals have wide rights to use their works for teaching and scholarly purposes without needing to seek permission, including, but not limited to:
Authors/Readers/Third Parties can copy and redistribute the material in any medium or format and remix, transform, and build upon the material for any purpose, even commercially. Still, they must give appropriate credit (the name of the creator and attribution parties (authors detail information), a copyright notice, an open access license notice, a disclaimer notice, and a link to the material), provide a link to the license, and indicate if changes were made (Publisher indicates the modification of the material (if any).
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g., display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-ShareAlike (CC BY-SA).
JURNAL REAKTOR (p-ISSN: 0852-0798; e-ISSN: 2407-5973)
Published by Departement of Chemical Engineering, Diponegoro University