BibTex Citation Data :
@article{Reaktor28031, author = {Endang Suhendi and Andre Wibowo and Tia Lestari and Teguh Kurniawan}, title = {Effect of Acid Concentration on the Activation of Bayah Natural Zeolite for Palm Kernel Shell Pyrolysis Application}, journal = {Reaktor}, volume = {20}, number = {3}, year = {2020}, keywords = {}, abstract = { Biooil is the main product in the pyrolysis process which is expected to be a liquid fuel replacement solution. But the resulting biooil cannot be directly used as a result of high oxygenated compounds, high viscosity, corrosive, and unstable. Addition of activated natural zeolite catalyst to the pyrolysis process is expected to improve the quality of biooil in order to be used as a renewable liquid fuel. The research aims to determine the influence of acid concentrations on zeolite modification to the characteristics of pyrolysis products. Result of catalyst characterization indicates that zeolite activation using acid will increase Si/Al ratio as well as open the surface of previously hindered zeolite. The yield of char produced in this study tends not to undergo significant changes between the catalytic and noncatalytic pyrolysis by 33% wt. Addition of zeolite catalyst in pyrolysis proved to be able to increase the content of phenol and decrease the content of acetic acid in bio-oil by 6% . Meanwhile, yield of CO 2 increases by 20% in the use of catalysts due to the release of oxygen in the oxygenate compounds. The results of this study showed that the resulting biooil still does not meet the specifications of liquid fuels but can be utilized as a renewable chemical feedstock. Keywords: pyrolysis ; biomass ; natural zeolite ; modified }, issn = {2407-5973}, pages = {109--116} doi = {10.14710/reaktor.20.3.109-116}, url = {https://ejournal.undip.ac.id/index.php/reaktor/article/view/28031} }
Refworks Citation Data :
Biooil is the main product in the pyrolysis process which is expected to be a liquid fuel replacement solution. But the resulting biooil cannot be directly used as a result of high oxygenated compounds, high viscosity, corrosive, and unstable. Addition of activated natural zeolite catalyst to the pyrolysis process is expected to improve the quality of biooil in order to be used as a renewable liquid fuel. The research aims to determine the influence of acid concentrations on zeolite modification to the characteristics of pyrolysis products. Result of catalyst characterization indicates that zeolite activation using acid will increase Si/Al ratio as well as open the surface of previously hindered zeolite. The yield of char produced in this study tends not to undergo significant changes between the catalytic and noncatalytic pyrolysis by 33% wt. Addition of zeolite catalyst in pyrolysis proved to be able to increase the content of phenol and decrease the content of acetic acid in bio-oil by 6% . Meanwhile, yield of CO2 increases by 20% in the use of catalysts due to the release of oxygen in the oxygenate compounds. The results of this study showed that the resulting biooil still does not meet the specifications of liquid fuels but can be utilized as a renewable chemical feedstock.
Keywords: pyrolysis; biomass; natural zeolite;modified
Article Metrics:
Last update:
Characteristics and performance of zeolite catalyst for methane production from durian rind waste
The Effect of Time on the Activation of Bayah Natural Zeolite for Application of Palm Oil Shell Pyrolysis
Last update: 2025-11-22 10:36:00
Reaktor provides immediate open access to its published articles under the terms of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license. Authors retain copyright, without restrictions, merely granting the journal a non-exclusive license to publish their article and identify itself as its original publisher.
Whether as an author or a reader, you are free to download, adapt, share, upload to a social network or institutional repository, or redistribute articles for any other lawful purpose in any medium, provided you give appropriate credit to the original author(s) and Reaktor, link to the CC BY-SA license, indicate if changes were made, and redistribute any derivative work under the same license.
JURNAL REAKTOR (p-ISSN: 0852-0798; e-ISSN: 2407-5973)
Published by Departement of Chemical Engineering, Diponegoro University
View My Stats