BibTex Citation Data :
@article{Reaktor40508, author = {Aji Prasetyaningrum and Sadam Arrois and Fitri Lafifa and Aat Zaki Mubarok and Fadlillah Fani and Noer Abyor Handayani and Ratnawati Ratnawati and Bakti Jos}, title = {Encapsulation of Lemongrass Extract (Cymbopogon citratus) Coated Alginate/Chitosan Using Gelation Method}, journal = {Reaktor}, volume = {21}, number = {3}, year = {2021}, keywords = {}, abstract = { Lemongrass (Cymbopogon citratus) is a medicinal plant with various biological activities such as antibacterial, antifungal, antiprotozoal, anti-inflammatory, and antioxidant. This study aimed to encapsulate lemongrass bioactive in alginate/chitosan complex by enhancing the properties of CaCl2 crosslinked incorporated with tween 80 by ionic gelation method. The hydrogel was prepared by mixing alginate solution (2% w/v) and chitosan solution (1% w/v) with a ratio (1:1 v/v). Tween 80 (2% v/v) was added as a dissolution enhancer and CaCl2 as a crosslinker agent. The formulation varying by concentration of CaCl2 (0.1M to 0.3M) and lemongrass extract (2% to 12%). Encapsulation lemongrass with alginate-chitosan beads is characterized to determine encapsulation efficiency, swelling study, morphology, functional groups, and release study. The results showed that encapsulation efficiency ranged from 74.81% to 83.07%. Encapsulation efficiency increased with the addition of CaCl2 and lemongrass extract concentration. The swelling ratio ranged from 27.29 to 37.81, it will decrease with the addition of CaCl2 and lemongrass extract concentration. The Scanning Electron Microscopy (SEM) analysis of hydrogel beads shows a polyhedral shape, porous, and rough surface which indicates bioactive of lemongrass trapped on the beads. The Fourier Transform Infrared Spectroscopy (FTIR) results show new peaks at 1734 cm-1 as carbonyl stretch vibrations in ketones, aldehydes, and carboxylic acids, indicating the addition of lemongrass extract. Bioactive of lemongrass extract loaded alginate-chitosan beads was successfully released as much as 87.12% at pH 6.8. This study suggested the strong potential alginate-chitosan beads as an encapsulating agent for lemongrass extract using the ionic gelation method, and it has potential as a drug delivery system. Keywords: encapsulation; lemongrass; alginate; chitosan; CaCl2 }, issn = {2407-5973}, pages = {124--132} doi = {10.14710/reaktor.21.3.124-132}, url = {https://ejournal.undip.ac.id/index.php/reaktor/article/view/40508} }
Refworks Citation Data :
Lemongrass (Cymbopogon citratus) is a medicinal plant with various biological activities such as antibacterial, antifungal, antiprotozoal, anti-inflammatory, and antioxidant. This study aimed to encapsulate lemongrass bioactive in alginate/chitosan complex by enhancing the properties of CaCl2 crosslinked incorporated with tween 80 by ionic gelation method. The hydrogel was prepared by mixing alginate solution (2% w/v) and chitosan solution (1% w/v) with a ratio (1:1 v/v). Tween 80 (2% v/v) was added as a dissolution enhancer and CaCl2 as a crosslinker agent. The formulation varying by concentration of CaCl2 (0.1M to 0.3M) and lemongrass extract (2% to 12%). Encapsulation lemongrass with alginate-chitosan beads is characterized to determine encapsulation efficiency, swelling study, morphology, functional groups, and release study. The results showed that encapsulation efficiency ranged from 74.81% to 83.07%. Encapsulation efficiency increased with the addition of CaCl2 and lemongrass extract concentration. The swelling ratio ranged from 27.29 to 37.81, it will decrease with the addition of CaCl2 and lemongrass extract concentration. The Scanning Electron Microscopy (SEM) analysis of hydrogel beads shows a polyhedral shape, porous, and rough surface which indicates bioactive of lemongrass trapped on the beads. The Fourier Transform Infrared Spectroscopy (FTIR) results show new peaks at 1734 cm-1 as carbonyl stretch vibrations in ketones, aldehydes, and carboxylic acids, indicating the addition of lemongrass extract. Bioactive of lemongrass extract loaded alginate-chitosan beads was successfully released as much as 87.12% at pH 6.8. This study suggested the strong potential alginate-chitosan beads as an encapsulating agent for lemongrass extract using the ionic gelation method, and it has potential as a drug delivery system.
Keywords: encapsulation; lemongrass; alginate; chitosan; CaCl2
Article Metrics:
Last update:
Designing Alginate/Chitosan Nanoparticles ContainingEchinacea angustifolia: A Novel Candidate for Combating Multidrug‐ResistantStaphylococcus aureus
Synthesis and Characterization of Chitosan/Alginate Hydrogel Using CaCl2 as a Crosslinking Agent
Designing Alginate/Chitosan Nanoparticles Containing Echinacea angustifolia: A Novel Candidate for Combating Multidrug‐Resistant Staphylococcus aureus
Last update: 2025-02-02 06:44:28
In order for REAKTOR to publish and disseminate research articles, we need non-exclusive publishing rights (transferred from the author(s) to the publisher). This is determined by a publishing agreement between the Author(s) and REAKTOR. This agreement deals with transferring or licensing the publishing copyright to REAKTOR while Authors still retain significant rights to use and share their published articles. REAKTOR supports the need for authors to share, disseminate, and maximize the impact of their research and these rights in any databases.
As a journal author, you have the right to use your article for many purposes, including by your employing institute or company. These Author rights can be exercised without the need to obtain specific permission. Authors publishing in BCREC journals have wide rights to use their works for teaching and scholarly purposes without needing to seek permission, including, but not limited to:
Authors/Readers/Third Parties can copy and redistribute the material in any medium or format and remix, transform, and build upon the material for any purpose, even commercially. Still, they must give appropriate credit (the name of the creator and attribution parties (authors detail information), a copyright notice, an open access license notice, a disclaimer notice, and a link to the material), provide a link to the license, and indicate if changes were made (Publisher indicates the modification of the material (if any).
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g., display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-ShareAlike (CC BY-SA).
JURNAL REAKTOR (p-ISSN: 0852-0798; e-ISSN: 2407-5973)
Published by Departement of Chemical Engineering, Diponegoro University